Influence of poly(ethylene oxide) sample preparation on the results of thermogravimetric analysis
DOI:
https://doi.org/10.48188/so.2.5Keywords:
poly(ethylene oxide), thermogravimetric analysis, kinetic analysisAbstract
Aim: To investigate whether the sample preparation process of poly(ethylene oxide) (PEO) affects kinetic analysis of the thermal degradation process. Kinetic analysis was performed to describe the course of a chemical reaction regardless of the reaction conditions and the reaction system complexity. One differential method, the Friedman method, and one integral Kissinger-Akahira-Sunose method (KAS), were applied in this work.
Methods: The PEO sample was prepared in 4 different ways. Thermogravimetric analysis was performed to determine the thermal degradation of prepared samples. Infrared spectroscopic analysis was performed during the preparation of the PEO film obtained by casting from the solution.
Results: Dynamic thermal decomposition of PEO, regardless of the method of preparation, takes place through a single decomposition stage, which is manifested by the appearance of one peak on derivative thermogravimetric (DTG) curve. During the preparation of the PEO film, the procedure was carried out at a temperature higher than its melting temperature (Tm=65°C). After the cooling, the obtained sample didn’t solidify and it had an intense odor of acetic acid, which was confirmed by infrared spectroscopic analysis. Samples III and IV were re-prepared at a temperature lower than the melting point of PEO, obtaining samples of satisfactory quality.
Conclusion: In order to prepare poly(ethylene oxide) films by solution casting technique, drying should be carried out at temperatures below the melting point of PEO. If TG analysis of pure PEO powder is compared with the results of hot pressed samples and solution cast samples, it can be concluded that the preparation of the sample doesn’t affect the thermal stability of the PEO. The dependence of activation energy calculated by the differential Friedman and integral KAS method on conversion is constant for all samples in a broad conversion range, regardless of how the samples were prepared. The hot pressed samples and solution cast samples have lower activation energy than the commercial PEO powder.
Downloads
Published
Issue
Section
Categories
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.