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The role of the normal distribution in the realm of statistical
inference and science is considered from epistemological
viewpoint. Quantifiable knowledge is usually embodied in
mathematical models. History and emergence of the normal
distributionis presented in a close relationship to those mod-
els. Furthermore, the role of the normal distribution in esti-
mation of model parameters, starting with Laplace’s Central
Limit Theorem, through maximum likelihood theory lead-
ing to Bronstein von Mises and Convolution Theorems, is dis-
cussed. The paper concludes with the claim that our knowl-
edge on the effects of variables in models or laws of nature
has a mathematical structure which is identical to the nor-
mal distribution. The epistemological consequences of the
latter claim are also considered.

“Everybody believes in the exponential law of errors [i.e., the normal distribu-

tion]: the experimenters, because they think it can be proved by mathematics;

and the mathematicians, because they believe it has been established by obser-

vation.”, H. Poincare [1]

Introduction

Every student who attended statistics class came in contact with the normal distribution

quite rapidly. Many were puzzled with the omnipresence of the normal distribution in sta-

tistics and its overrepresentation when compared to other types of distributions. Even a

famous statistician such as K. Pearson could not resist the mathematical lore of the normal

distribution and hypothesized that even those things that are not distributed normally are

actually a mixture of various normal distributions [2]. This paper aims to present a realis-

tic status of the normal distribution within the realms of science and statistics.
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Knowledge, measurement, and variability

Natural and some other sciences are based on measurements; a property which universally
accompanies any type of measurement is variability. Conceptually speaking, the variabili-
ty arises due to properties of measuring technique and/or properties of studied system [3].
Purpose of science is to explain i.e. to reduce such variability by making predictions based
on the properties of studied system. Such properties are identified by experimentation
or observation. Furthermore, they are usually connected in a logically coherent theories,
which are then formalized in terms of statistical, i.e. mathematical models. However, due
to incomplete understanding of systems, which are typically complex, only occasionally a
deterministic ideal of completely diminished variability can be achieved [3]. So it can be
said that unexplained variability is a measure of knowledge deficiency i.e. ignorance [3].
This fact leaves us with reality that most models have both deterministic and stochastic
(ancient Greek, otdyog, stokhos, to aim, guess) parts [4] (Figure 1 a).

Figure 1. a) Depiction of data variability around deterministic part of model in a left panel. Right panel presents a full
model with both deterministic component (line) and a probability distribution (blue) that describes data variability. b)
Fully stochastic model, a log normal probability distribution in this case, without any deterministic part.
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Deterministic part is some kind of mathematical function which contains variables that
are considered to govern the system, whereas stochastic part of a model is also a mathe-
matical function which describes data scatter around deterministic part i.e. the variability
which was left unaccounted for by deterministic part of model [4]. The latter type of math-
ematical functions is called probability distribution [4]. It describes probability of observa-
tion occurrence around some kind of central point which might or might not be defined by
deterministic part of model (Figure 1 a). If a deterministic part of a model is replaced by
probability distribution, then the model can be considered purely stochastic which means
that properties of system cannot predict the outcome i.e. outcome is treated as random
variable (Figure 1 b) [4]. Models that are most common in science are models with finite
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number of variables and they are called parametric models. Since they lend themselves to
extrapolation and intrapolation very easily, their application in decision-making process
is most common, therefore this paper will consider only parametric models [3, 5, 6].

Estimating the effects of variables

Another problem that is ubiquitous in sciences that use measurement is so called estima-
tion or inverse problem. System properties which are used to predict outcomes of interest
are called independent, input, explanatory or predictor variables [4]. The estimation pro-
cedures seek to infer values of model parameters (“estimands”), i.e. effects of each vari-
able, from the collected data [4]. Estimation procedure is a mathematical algorithm which
is used to select the “the best” value of a model parameter by some kind of criterion [7].
This criterion is calculated by mathematical function derived from model equation which
takes data as an input variable. This function is called an estimator. The model parameter
value selected in such manner is called point estimate. Furthermore, in addition to point
estimate, estimation procedure usually gives a range of plausible values which are called
interval estimate and a value of estimator (i.e. criterion), which can be used to judge model
validity in relation to other competing models [7, 8]. If those plausible values are plotted
with their respective value of the criterion, a graph of a so-called sampling distribution of
a model parameter estimate will arise (Figure 2) [7]. The latter often has the same mathe-
matical form as some common probability distributions. However, whether it represents
actual probability or something else is a matter of centuries long debate in statistics [9].
To conclude, in estimation procedure a scientist inductively reasons from a sample (i.e.
collected data) to a population [2].

The discovery of the normal distribution and its place within statistical inference is inti-
mately connected to the above-mentioned problems of estimation and variability.

How did the normal distribution emerge?

Problems of variability

Sciences that were first to introduce measurement to their method were astronomy and
geodesy both of which were essential for the European society at the time of Renascence
and Modern age [10]. Typical problems of that age were calculating an orbit of a celes-
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Figure 2. An example of hypothetical sampling distribution of model parameter (estimand) along with point estimate
(a value of model parameter associated with the greatest estimator value) and an interval estimate. Estimator is defined
as function of data which is used to calculate the criterion based on which the optimal estimate of parameter is chosen.

tial body based on series of observations or calculating an arc of meridian also based on
instrumental observations. If those problems are looked at in more general manner two
questions arise. The first one is how to deal with variability in multiple measurements
taken under same conditions [10]. The second one is how to deal with variability in mea-
surement taken under different conditions, for example, a measurement of same variable
under two different experimental conditions or on different occasions of an observation
[10]. Answering the first question would eventually result in development of different
probability distributions or error functions as they were called at the time [11]. Likewise
answering the second question would result in development of least absolute difference
and least squares estimation techniques and eventually in maximum likelihood estima-
tion procedure [12]. From both historical and mathematical viewpoints answers to these
two questions turned out to be directly connected.

In the mid-18™ century, a problem of exact shape of Earth was at the center of scientific in-
terest. One of the methods employed to study the problem was measurement of length of
meridian arc. A scientific expedition would travel along the meridian and measure lengths
of the arc at different latitudes [10]. Model which was used to translate length and latitude
to information about Earth shape was a simple linear model derived from geometric con-
siderations [10]. However, due to variability in measurement the data points collected at
different latitudes (i.e. occasions) could not be aligned with a single straight line when
plotted. First to solve this problem of fitting a straight line through set of scattered points
was Roger J. Boscovich (Ruder Josip BoSkovic) a Croatian scientist, philosopher and Jesuit
priest [13]. His solution was based on idea that line should be drawn in such manner that
sum of absolute deviations, on y axis, (i.e. differences) between the line and individual
data points should be minimized [2, 10, 12] (Figure 3). Boscovich did not model the data
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Figure 3. Illustration of least absolute difference and least squares estimation techniques.

scatter around the deterministic part of model (i.e. the straight line) explicitly since the
concept of modelling data scatter with probability distributions was most probably un-
known to him in 1757, when he developed his solution [11, 12].

The notion that variability in measurement can be treated as probability density (distri-
bution) or error curve was first put forward by Thomas Simpson in 1756 [11, 12]. Simpson
modeled the dispersion of measurements around a center by what we would call today
uniform and triangular probability distributions [11]. Laplace followed by proposing two
error curves, both with the property of exponential decay in probability of measurements
as the latter deviates more from central, i.e. most common, value (Figure 4) [11]. Daniel
Bernoulli went few steps further and suggested that parameter estimation for fitting his
semicircular error curve should be done by choosing those parameter values, among the
whole group of potential parameter values, that will maximize the likelihood, as we would
call it today, of generating the observed data [12]. This was the birth of what is today
known as maximum likelihood estimation procedure [14].

Between 1794 and 1798 Johann Carl Friedrich Gauss made derivation of what we call to-
day normal probability distribution. In solving the problems of orbits of celestial bodies
Gauss faced the difficulties that were essentially identical to those of Boscovich. However,
since Gauss was primarily an excellent mathematician, he discovered that minimizing
the sum of squared differences, on y axis, between the deterministic part of model (e.g.
straight line) and individual data points is far more advantageous in terms of algebra
and arithmetic then minimizing the sum of absolute differences [12]. Despite this elegant
idea of squaring the differences, Gauss was not satisfied with its justification solely on
computational ground [12]. In his attempt to find conceptual grounding for minimizing
the sum of squared differences, he concluded that such thing is impossible without explic-
itly modelling data scatter with an error curve [12]. After a theoretical consideration on
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Figure 4. Laplace’s error curve. s,;mean absolute deviation(MAD).

properties of observational errors Gauss came to three assumptions: 1) small errors are
more likely than larger errors, 2) error curve must be symmetrical i.e. equal deviations
in negative and positive directions from most common measurement have equal proba-
bility of occurrence and 3) the most likely quantity being measured i.e. the most common
measurement in a set of measurements is an arithmetic average of all measurements [11].
When these three assumptions are translated in mathematical language the equation of
normal probability distribution arises (Figure 5) [11]. Gauss went even further and by use

arithmetic mean- u

10(SD)I

2 0 (SD)

: / 30 (SD) \ :
e N

value (x)

probability of
observation (p)

Figure 5. A graph and equation of the normal distribution. One of the nice properties of the normal distribution is that
68% of events that occur are captured by an interval of 1 standard deviation (SD, ¢) around arithmetic mean (u), 95% by
an interval of 2 SD and 99.7 by an interval of 3 SD.
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of Bayes theorem and Bernoulli’s maximum likelihood principle he showed that fitting
the line with a normal distribution around it, is actually done by minimizing the sum of
squared differences between the line or a curve and data points [12, 15]. Thus, if one as-
sumes that data is scattered equally around the deterministic part of a model in shape that
is best described by the normal distribution, the most likely values of parameters in such
model are reached by minimizing the sum of squared differences between deterministic
part of a model and individual data points. Today, the procedure of fitting a line or a curve
by minimizing sum of squared differences is called the least squares estimation and is a
specific case of maximum likelihood estimation procedure [4].
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Problems of estimation

The very first discovery of what we call today the normal curve was done by Abraham de
Moivre in 1733 [16]. De Moivre was studying different problems from, then popular games
of chances. One of such problems is best illustrated by the question: what is the probability
of observing 10 or more heads in 30 coin tosses. Or to put it in a more general or modern
language, what is the probability of certain numbers of outcomes in fixed number of trials,
given that outcomes have fixed probability of appearing in each trial. De Moivre elegantly
addressed the problem by applying the binomial distribution, however, calculating those
probabilities for large number of trials based on binomial distribution proved to be very
tedious [17]. In search of simplification, he discovered that as number of trials increases
the binomial distribution approximates and becomes almost indistinguishable from a bell
shaped curve that we know today as the normal curve (Figure 6) [17].

Figure 6. An illustration of convergence of binomial distribution to normal distribution as number of trials (n) increases.

Shortly after Gauss, Laplace published his derivation of the normal curve, which will have
far more reaching consequences on quantitative science as a whole [2]. Laplace was in-
terested in studying probability distributions of sums and averages of great number of
random variables. Most often these variables were astronomical data; however he was
also concerned with daily barometric pressures and actuary data [18]. One of specific
problems on which he worked was studying the distribution of deviations or differences
between arithmetic mean of data and true value that he was trying to estimate from mul-
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tiple series of measurement [18]. In today’s language we would say that he was studying
behavior of averages and sums of variables by repeated sampling from population. Again,
when the problem is translated in mathematical framework, Laplace was able to derive
the normal distribution equation [18]. In other words, arithmetic means of multiple series
of measurements will be approximately normally distributed around population arith-
metic mean as a number of the series of observations tends to infinity [18]. The latter fact
is independent of actual distribution of estimated variable, and it was rigorously proven
in first half of 20% century and named central limit theorem (CLT) [18]. More intuitively
and with less technicalities the central limit theorem might be explained in the fallowing
way (Figure 7). If a certain variable or a property (e.g., height) in population is consid-
ered, it can be described with some kind of probability distribution curve (Figure 7 a-c).
Furthermore, if the goal of scientific inquiry is to estimate population arithmetic mean by
random sampling, then the fallowing can be said. By random sampling or just by virtue of
representative sampling the arithmetic mean of drawn samples is likely to be the same as
or near to population mean (Figure 7 d-f). Samples which have means characterized by
large deviations from population mean are more unlikely to be drawn from population
then the samples with smaller deviations. Finally, again by the virtue of random (repre-
sentative) sampling the arithmetic means of samples are equally likely to deviate in both
directions from the population arithmetic mean. These latter three facts, that are derived
from an assumption of random (representative) sampling, are actually identical to those
from which Gauss derived the normal curve. Therefore, distribution of arithmetic means

Figure 7. Intuitive explanation of the central limit theorem. Three different populations were simulated, 30 random
samples (only 5 are displayed on d, e and f) with size of 10 measurements per sample were drawn from each popula-
tion. If unbiased and random sampling is done from populations (a-c) the drawn samples (d-f) are likely going to have
arithmetic means that are equal or near to arithmetic mean of population (y). Arithmetic means of samples, also due to
random sampling, are more likely to deviate less then more from population mean. Furthermore, again due to random
sampling, direction of such deviation from population mean in both directions is equally likely. All of these facts that
are derived from properties of random (unbiased or representative) sampling determine that the arithmetic means of
samples are normally distributed around population arithmetic mean (u) (g-i).
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of multiple random samples drawn from population is a normal distribution centered
around population mean (Figure 7 g-i).

The consequence of the discovery was immediately clear to Laplace. He concluded that
from the distribution of arithmetic means of samples, a population arithmetic mean can
be estimated along with the estimation error around it, without need of knowing the real
distribution of measured variable; this formed the first alternative to Bayesian inference
[2]. Today, the distribution of arithmetic means of multiple samples (i.e. series of observa-
tions), which is normal by CLT, is called sampling distribution, center of such distribution
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which is again arithmetic mean calculated from multiple arithmetic means of the samples
is called point estimate of population arithmetic mean; dispersion around the arithmetic

mean of sampling distribution is called interval estimate or confidence interval [2]. Later,
Laplace was also able to derive a version of central limit theorem which applies to medi-
ans [19].

Asymptotics

Laplace’s discovery is foundation of two large and significant disciplines in statistics, one
of them is called frequentists estimation and another one asymptotics [2]. The latter stud-
ies the behavior of different estimating techniques or sampling distributions of their es-
timates as sample size tends to infinity i.e. when the observation is repeated under same
conditions ad infinitum without ever accounting for whole population. Sampling to infin-
ity appeared as a consequence of mathematical technique used in Laplace’s derivation of
CLT [18]. Its interpretation in terms of logic was given at the beginning of 20% century by
C.D. Broad and H. Jeffreys. They concluded that for scientific law to be true it must with-
stand the test of infinite validation or replication [20]. Since infinity due to its definition
is not reachable, the scientists can never be completely confident in their laws (models).
This is basically, a mathematical restatement of denying the consequent (modus tollens)
rule of inference, or to put in more simple view, phenomena can be caused by multiple
system properties some of which might be unknown to investigator [21]. Therefore, sci-
entist can never claim that the causes of certain phenomena are completely known since
there always exists a possibility that some unknown causes (variables) are not included
in model [21].

Normal curve as a stochastic model

First one to apply normal distribution as a stochastic model was Adolphe Quetelet in mid-
19% century. He modeled a chest girth of 5000 Scottish soldiers with the normal distribu-
tion [11]. Other social and biological scientist soon fallowed and many traits such as IQ,
height, body mass were modeled with the normal curve, at least to some degree of accura-
cy [11]. In biomedical field and especially in laboratory medicines a lot of variables from
usual blood tests can be modeled with the normal curve [22]. Furthermore, since most of
linear and nonlinear regression techniques use normal distribution as stochastic part of
model, we can argue that the normal distribution is definitely most used one in science.
However, there are some other natural phenomena that are not normally distributed.
For instance, lifespans of human beings or machines are often exponentially, or Weibull
distributed [23].

st-open.unist.hr
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Normal distribution and model parameters estimation

Maximum likelihood estimation

Some 150 years after D. Bernoulli stated a principle that estimates of model parameters
should be chosen in a such manner that selected values of model parameters maximize
the likelihood of data generation by the model, R. A. Fisher published his three influential
papers in which he named the principle as maximum likelihood estimation method [14].
In his 1922 seminal paper, which is considered by many as establishment of mathematical
statistics as we know it today, he defined four key properties of estimators [24] (Table 1).
Consistent estimator, as Fisher defined it, is the one which has its sampling distribution
centered on true value of model parameter, as sample size tends to infinity [25]. Efficient
estimator was defined by Fisher as the estimator which asymptotically has a normal prob-
ability distribution with the smallest possible standard deviation [25]. Modern definition
of efficiency is somewhat different, and it states that the efficient estimator has the least
possible variance of a sampling distribution [26]. Sufficient estimator is the one which
gives as much information about the estimated parameter as possible for a given sample
[25]. Fisher was able to prove, although with deficiencies, that maximal likelihood esti-
mates are efficient, asymptotically normally distributed (i.e. their sampling distribution
approximates the normal distribution as sample size tends to infinity), consistent, and
sufficient [14].

Table 1. Properties of estimators

Property of an estimator Definition

Sampling distribution of estimator is centered on true value of parameter that is

Consistency being estimated

Efficiency The sampling distribution of parameter has the smallest possible variance

] Sampling distribution contains as much as possible information about the parameter
Sufficiency being estimated. That is there is no other estimating technique that would provide
more information on parameter.

Regular estimator is the one which has a stable variance of sampling distribution
Regularity i.e. the variance does not behave erratically in the neighborhood of the center of
sampling distribution.

st-open.unist.hr

When considering likelihood as a technical term it should be noted that although closely
related to probability it is not the probability since it does not satisfy properties of prob-
ability (e.g. unlike probability, total sum of likelihood does not sum to 1) [27]. Therefore,
when speaking of probability distribution of maximum likelihood function, it merely
means that shape of maximum likelihood function can be described by formula which is
identical to that of certain probability distribution. However, by using the Bayes theorem,
likelihood can easily be converted to proper probability [23]. If the problem of asymptot-
ic distribution of parameter estimate is put in a Bayesian framework, a very influential
result know as Bernstein-von Mises theorem can be reached. The theorem states that un-
der certain regularity conditions such as smooth, well specified parametric model with
well-behaved prior distribution of parameters, the posterior distribution of parameters
estimates asymptotically converges to normal distribution centered on maximum likeli-
hood estimate of parameters [28].
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Convolution theorems

By the middle 20" century all of Fishers claims were more rigorously proven by Wald,
Cramer, Wolfowitz and others [14]. In their proofs they had to resort to assumptions which
are now known as usual regularity conditions [14]. Even in the 1960s and 1970s some gaps
in evidence for such optimal properties of maximum likelihood existed. Work by Kaufman
finally resolved the problem of asymptotic normality of maximum likelihood estimate and
its optimality [29]. In doing so Kaufman, with a contribution of Inagaki, discovered a very
general and far reaching concept in theory of estimation known as Convolution Theorem
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[29]. Recently, Geyer was able to conceptually simplify conditions for asymptotic normal-
ity of maximum likelihood estimates and show that asymptotic normality stems from

mathematical properties of likelihood function itself. In doing this he did not have to use
asymptotics (i.e. CLT) [30].

Maximum likelihood is only one of many estimation methods. Theoretically an estimator
can be almost any mathematical function that maps from a sample space (i.e. set of all
possible outcomes of experiment) to a set of parameter estimates. Given this vast diversity
of possible estimators, their properties are what qualifies them as desirable or not [4]. As
mentioned above, the introduction of estimator properties are in large part due to Fisher’s
work. Building on Kaufman’s work Hajek and later Le Cam were able to prove that as-
ymptotic or limiting sampling distribution of any regular estimator in parametric model
is a sum of two independent probability distributions [29]. One of those distributions is
normal with the least possible variance and the other one is of arbitrary form. Today this
result is known as Hajek-Le Cam Convolution Theorem [29]. The consequence of such the-
orem is that the efficient estimator is the one for which arbitrary component equals zero
i.e. the one which is asymptotically normally distributed.

Epistemological considerations and the normal distribution

Truth, knowledge and decision making

The purpose of all statistical analysis ultimately is to inform process of decision making
[31]. For example, in science of medicine therapeutic decision are informed by statistical
models of drug effectiveness, in business, stock market models help to inform subjects
which shares to buy or sell. If models are describing the truth about the system that is
being studied, then by necessity all of the decisions are going to be well informed. The
truth itself is defined by some philosophers as everything that an entity, or a system in our
case, is [32]. In natural sciences prior to a study, experimentation, or observation the truth
about any system is unknown. The main reason for this is that man is not a creator of those
systems, moreover, even in a system created by the men (e.g an airplane or a building) the
elements of system (e.g atoms) and laws governing interaction of those elements are not
created by men. Therefore, in order to gain insight into a truth (i.e to obtain knowledge)
about any system, in natural science, investigators have to study previous knowledge, ob-
serve and experiment with a system. Statements derived from the latter three are usually
united in a theory or mathematical model that pertains to be the truth about the sys-
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tem. However, the validity of such claims must be gauged by the set of standards or rules
known in epistemology as the tests or criteria of truth.

The most adequate criterion of truth is coherence [33]. It states that theory or a model
that gives consistent and overarching explanation for all observations is most likely to
be true. Furthermore, another criterion of truth that is built in definition of coherence is
consistency. Consistency can be understood in two ways: as mere consistency, which is the
same as the principle of non-contradiction, or as a strict consistency which states that all
claims in theory should logically proceed one from another [33]. Mathematics would be
good example of the latter, on the other hand most natural sciences are not consistent in
a strict sense.

Statistical measures of explanation are logical extensions of coherence criterion into
quantitative realm. These, so called, goodness of fit measures quantify which of many
alternative models (theories) preforms the best in explaining the observations, that is in
reducing data scatter (variability) around deterministic part of model [34, 35]. The most
widely used such measures are deviance, likelihood ratios and various informational cri-
terions (e.g AIC, BIC). All of the latter measures are calculated from estimators used in
model parameters estimation procedures [34, 35]. Thus, it is tempting to speculate that
goodness of fit measures also fallow the normal distribution in asymptotic case, since as it
has been shown in previous section, the estimators, which are the building blocks of their
calculation, do. However, this is not the case because in those calculations estimators are
mathematically manipulated (e.g., logged or divided) and therefore their distributions are
changed from the normal distribution to some other more or less know distributions [34].
Based of goodness of fit criteria and some other graphical tools that basically also deal
with goodness of fit, a scientist can decide which model explains the data best and there-
fore which are likely to be true [4, 34]. Furthermore, if more than one model has similar
explanatory power, a scientist can resort to model averaging techniques given that those
models are not mutually exclusive [36]. In a decision-making process once the question
of most likely true model is settled, the next question to consider is the question of effects
of different variables governing the system (i.e. model parameters) [31]. These are of pe-
culiar interest when it comes to application of science since manipulating these variables
changes the states of studied system. Sizes of these effects are normally distributed, as it
was stated in a previous section.

After all that has been said in this section, it can be stated that both measures of goodness
of fit and measures of effects of model’s variables are quantities that have their distri-
butions i.e. they can be defined by mathematical functions knowns as probability distri-
butions. Thus, it can be concluded that epistemological insight (i.e. acquired knowledge)
has a mathematical structure. That structure is the normal distribution for measures of
effects of variables in model (i.e., model parameters), on the other hand when it comes to
measures of explanatory power of model (i.e. goodness of fit measures) the mathematical
structure is not normal distribution, but its calculation is based on estimators that are
normally distributed.
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The structure of acquired knowledge and its implications

Since acquired knowledge has mathematical structure of a certain probability distribu-
tion that implies certain things can be said about it from mathematical perspective.

Estimates of model parameters have normal distribution, this means that qualitative traits
that describe the normal distribution can be applied in description of our knowledge of
model parameters (i.e. the effects of variables in model). So, it can be said that such esti-
mates tend to aggregate around average estimate, their deviation form average estimate
is symmetrical and of equal magnitude. Furthermore, from quantitative sides it can be
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stated which estimates of magnitudes or sizes of effect are more likely than others (Figure

5]. Similar descriptions can be done based on properties of distributions of goodness of fit
measures. However, the most striking property of probability, by definition, is its random-
ness i.e., uncertainty of actual outcome. This points to the fact that we cannot be determin-
istically certain in our predictions of outcomes, that is our knowledge is in the realm of un-
certainty or belief. The latter term would be preferred by Bayesians [37]. Thus, increasing
the variances (i.e. scale measures) of those distributions translates in to more uncertainty
in one’s estimates that is in one’s gained knowledge.

On the other hand, one can argue that if the system is described with a model that has a
negligible data scatter around deterministic part and interval estimates (e.g., 95% CIs) of
effects of variables that would be infinitesimally close to the point estimates, then a deter-
ministic prediction could be done. Indeed, such models exist, manly in sciences that deal
with systems that are composed of few entities and few interactions [38].

Even if such deterministic ideal is reached and mathematical structure of knowledge that
describes uncertainty (i.e., probability distributions) is reduced to negligibility, the notion
of uncertainty can not be eliminated. This mainly has to do with philosophical definition
of truth and logic. Since, man is not a creator of any system in natural sciences, one can
never know with certainty if his knowledge of system is equal to the truth of the system
(i.e., everything that systems is). Thus, if knowledge is defined as a subset of truth, one
can never be certain if that subset is equal to a set (i.e., truth) or if there is more left to be
observed and studied. In a more applied language this means that some unknown vari-
ables governing the system, or their magnitudes have not been present in an instance or
a period of time when data samples, which were used to infer about validity of models,
were collected. Consequentially their effects are not captured either by deterministic or
stochastic part of model. This ultimately leads to a problem of a definition of a studied
system and experimental design and control. Namely, a model that had a very good prop-
erties in one instance can fail in another instance because the two instances only appear to
be identical, whereas they actually differ due to presence of unknown variables that had
different or negligible effect on system in a previous instance. The latter, again points to
the requirement of infinite replication (asymptotics) if the model is to be considered true
with certainty, which is just a another manifestation of a fact that scientist is not a creator
of any natural system and thus he cannot know if the truth in its fullness has been reached
by ones experimentation, observation and analysis.
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Conclusion

In conclusion it can be summarized that scientific knowledge in natural sciences must
always be considered within a realm of uncertainty and consequentially when it comes to
decision-making within a realm of belief. This knowledge and associated uncertainty or
a belief, as Bayesians would say, can be quantified as probability distributions of effects
of model variables (i.e., model parameters) and goodness of fit (i.e. explanatory power)
measures. The former fallow the normal distribution, whereas the latter are derived from
the normal distribution. However, this mathematical structure does not describe episte-
mological uncertainty in its fullness. To accomplish this, a problem of ignorance towards
unknown variables in definition of system and consequentially, experimental design has
to be added to the mathematical structure.
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