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Aim: To investigate the association between the expression
of hyaluronan (HA) and its main receptor CD44 with the
presence of inflammatory infiltrate in gingiva samples of
patients suffering from advanced generalized periodontitis.

Material and Methods: Samples of gingival tissue from
healthy donors (controls, n = 20) and patients suffering
from advanced generalized periodontitis stage 3 and 4 (test
group, n = 20) were obtained. For immunofluorescence (IF)
staining, primary antibodies against HA, CD44 and general
inflammatory cell marker CD45 were used. The microscop-
ic slides were photographed and panoramic images were
edited in Adobe Photoshop®. The quantification of IF signal
expression domains and spatial gradients was performed
in Image]. The Microsoft Office Excel 2016 and GraphPad v8
software ware used for statistical analysis.

Results: HA and CD44 were found to be widely expressed
in the epithelium and subepithelial stroma of both healthy
and diseased gingiva, including the areas of the gingiva
containing the inflammatory infiltrate. No difference in the
total expression of HA and CD44 in healthy and diseased
gingiva was found. However, the pattern of distribution
of HA and CD44 signals was somewhat different between
the two groups of samples with regard to a statistically sig-
nificant increase in stromal expression of HA and CD44 in
diseased gingiva compared to healthy gingiva. No spatial
correlation between HA and CD44 expression with the pres-
ence of inflammatory infiltrate was found in diseased gingi-
va. Moderate spatial correlation between HA and CD44 was
found in diseased gingiva.

Conclusion: HA and CD44 might play a role in the regulation
of inflammatory response in advanced generalized peri-
odontitis. However, further studies are needed in order to
properly characterize such role of both investigated factors.
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Introduction

Hyaluronan (HA) is a glycosaminoglycan (GAG) component of the extracellular matrix that
is present in tissues in two main forms - as native high molecular weight HA (HMWHA)
and various low molecular weight HA (LMWHA) fragments. The degree of fragmentation
is an important determinant of the physiological function of HA, where HMWHA and
LMWHA may play opposite roles in the maintenance of tissue homeostasis as well as in
processes such as wound healing and the regulation of inflammatory response in tissues.
HMWHA exhibits antiangiogenic, immunosuppressive, and anti-inflammatory properties,
while LMWHA is angiogenic, immuno-stimulatory, and generally promotes the inflamma-
tory response in tissues [1, 2].

Research has shown that HA is directly involved in innate and adaptive immunity mech-
anisms, from the activation of various subpopulations of leukocytes, their migration and
the formation of gradients of inflammatory mediators and inflammatory cell infiltrate in
the tissue, to the resolution of the inflammatory response [3]. The regulatory role of HA
in the inflammatory response is highly dependent on the HMWHA to LMWHA ratio (in
general, inflammatory conditions promote HMWHA fragmentation), but the availability
of various cellular HA receptors is of equal importance, as HMWHA and LMWHA affect
cell behavior in response to events in their immediate microenvironment through these
receptors. Several cellular HA receptors, such as HARE, LYVE-1 and RHAMM have been
described so far, but the ubiquitously expressed CD44 receptor is regarded as the ma-
jor HA receptor. Numerous studies have confirmed the key importance of the interaction
between CD44 and HA in all aspects of HA metabolism as well as in cellular processes
involved in the inflammatory response in the tissue (such as leukocyte adhesion and mi-
gration, macrophage and T-lymphocyte activation, and the resolution of inflammation)
[4-6]. Generally speaking, the accumulation of HA and increased CD44 expression during
the acute inflammatory response have been described in various tissues [1, 7-10].

The regulatory role of HA and of the factors functionally related to it in the pathogenesis
of periodontitis as a chronic inflammatory disease has been poorly investigated. Most re-
search has been concerned with studying the effectiveness of HA preparations as auxilia-
ry substances in various forms of periodontal treatment (initial and surgical treatment)
and has not differed conceptually from researching the role of HA in the acute inflamma-
tory response during wound healing. This has resulted in a limited understanding of HA
as an inhibitor of inflammatory cell activation and general contributor to the resolution of
inflammation and the regeneration of the periodontal tissue [11]. A literature review iden-
tified only two 1990s studies that analyzed the expression of HA and its major receptor,
CD44, by immune-histochemical (IHC) staining of gingival samples [12, 13]. Both factors
were expressed in all gingival tissue sections, including the regions of subepithelial stro-
ma with inflammatory cell infiltrate. However, HA and CD44 expressions between groups
of samples were not compared statistically as methods of precise quantification of THC
staining were not used in these studies.

In this study, the HA and CD44 expressions in human gingival samples ware examined by
immuno-fluorescence (IF) and analyzed using computerized methods of IF signal quanti-
fication.
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Material and methods

Research structure and recruitment protocol

The research was conducted from October 2019 to March 2020 at the School of Medicine
at the University of Split as well at the Mediterranean Institute for Life Sciences. For the
study gingiva samples from the archives of the Department of Anatomy, Histology and
Embryology at the Split University School of Medicine were used. The approval to col-
lect and process gingiva samples for research purposes was obtained from the Ethics
Committee of the Split University School of Medicine (Class: 003-08/17-03/0001; Reg. No.:
05-PA-15-6/2017). The control group consisted of gingival tissue samples collected from sub-
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jects with a healthy periodontium while the test group consisted of gingiva samples from
subjects diagnosed with generalized advanced periodontitis stage III and IV. Periodontitis
was diagnosed based on the new 2017 classification of periodontal diseases and conditions
[14]. All subjects were adults in good general health (free from concomitant chronic or
systemic diseases). Gingival samples were collected from patients that had been referred
for clinical crown extension (controls) and tooth extraction due to extensive periodontal
tissue degradation (test group).

Samples

The sampling and initial processing of gingiva samples have been described in detail [15].
The gingiva specimens used in this study included the free gingiva region extending from
the gingival margin (marginally) to the interface with the alveolar bone edge (apically). 40
samples of the free gingiva (20 per group) were processed for the purposes of this study.
The gingiva samples were fixed in 4% paraformaldehyde solution for 24-48 h and then
stained with tissue dye on the side of the oral epithelium (vestibular side) for correct ori-
entation when embedded into paraffin blocks. The samples were then serially cut by mi-
crotome into 5 ym thick sections and mounted on slides. The sections were examined un-
der alight microscope to confirm their correct orientation — the oral and sulcus epithelium
of the free gingiva and the subepithelial stroma located between the two epithelia had to
be visible in every section. In addition to the existing orientation slides from the archives
that were stained with hematoxylin/eosin, new slides were additionally selected for Alcian
Blue staining (every tenth slide) to show total mucin concentration (includes all GAG class-
es). The sections were stained with Alcian Blue Stain Kit (PH 1.0) (ab150661, Abcam, UK)
according to the manufacturer’s recommendation. With this staining, saturated mucosub-
stances are stained blue, cell nuclei are stained red, and the background is stained pale
pink. The Alcian Blue sections were used in a preliminary histo-morphometric analysis of
the ratio of epithelial and stromal tissue sections in the whole-section area of individual
sections. Based on the results of this analysis, the selection of samples was confirmed for
further processing under the criteria listed above [15].

Immunofluorescence staining

Immuno-fluorescence (IF) staining was performed according to the standardized labora-
tory protocol at the Department of Anatomy, Histology and Embryology [16, 17]. The fol-

st-open.unist.hr



http://st-open.unist.hr

L
—
o
-
o
<
I
()
(o
<C
L
n
L
o

Cavar & Kero

st-open.unist.hr

lowing primary antibodies were used: sheep polyclonal HA antibody (Anti-Hyaluronan)
(1:200; ab150181, Abcam, UK), rabbit polyclonal CD44 antibody (Anti-CD44) (1:500;
ab157107, Abcam, UK), and murine monoclonal CD45 antibody (Anti-CD45) [MEM-28]
(1:200; ab8216, Abcam, UK) as general inflammatory cell marker. Slides were incubated
with primary antibodies for 24 hours in a humidity chamber at 4°C. Secondary antibodies
were: goat Alexa Fluor 488 (GREEN; ab150077, Abcam, UK) and donkey Alexa Fluor 488
(GREEN; ab150105, Abcam, UK). The incubation with secondary antibodies was 1 hour in
a humidity chamber at room temperature. For the staining of cell nuclei, the slides were
incubated for 2 minutes with 4’6’-diamidino-2-phenylindole (DAPI), rinsed with distilled
water and cover-slipped. To verify the preservation of the sections and the presence of
signals from the primary antibodies, the slides were examined under a fluorescence mi-
croscope (Olympus BX61) (Olympus, Tokyo, Japan). To verify the expression pattern of the
primary antibodies (cytoplasmic/nuclear), several targeted images of the epithelial and
stromal tissue sections were made. Those images were analyzed using color-scatter plots
to correlate the intensity of double IF staining based on the previously described proce-
dure [18, 19]. In each sample, three sections were stained for the test factor and the best
section (free from tissue damage, staining artifacts, with clearly visible IF signals) was
selected for panoramic imaging.

Acquisition and processing of panoramic images

The slides were examined and photographed using the panoramic imaging technique with
x10 (IF) and %20 (Alcian Blue) magnification under an invert epifluorescence microscope
(Carl Zeiss Microscopy GmbH; Jena, Germany) with full-frame digital camera Zeiss Axiocam
506 (resolution: 2752x2208 pixels (px)) and fixed settings for sensor sensitivity (ISO: 100).
For IF panoramic images, the exposure was set at 500 ms (anti-HA and anti-CD44) and 35
ms (DAPI) and 8 ms for Alcian Blue staining (light microscopy). The resulting micrographic
tiles were then merged into panoramic images with ZEN 2.5 (Carl Zeiss Microscopy GmbH;
Jena, Germany). The original black-and-white panoramic TIFF images (24-bit depth; sSRGB
color mode) were used for the IF staining analysis. The DAPI channel of panoramic images
that were selected to demonstrate IF staining here was pseudo-colorized (Image]J).

Panoramic images were edited, rotated, and resized in Adobe Photoshop® CC (2019) on a
high-resolution (600 dpi) background, as previously described, to preserve data resolution
when reducing the image size [15].

The Wizard Tool was used to measure histometric parameters such as the surface area of
the whole-section and the area of the epithelial and stromal compartments in panoramic
images (Adobe Photoshop® CC (2019)). A digital graphic pen tablet (Wacom Intuos PRO;
Wacom Co, Saitama, Japan) was used to mask the sections. The measures of the above
histometric parameters were originally expressed in pixels (px) and then converted into
percentages (%) of the whole-section or tissue compartment area.

Histograms for calculating and analyzing IF signal expression domains (relative area occu-
pied by the IF signal) in the whole-section as well as epithelial and stromal tissue compart-
ments, and 2D plots to display and analyze the spatial distribution of IF signal gradients
in the whole-section were made in Image] (NIH, Public Domain) and saved in spreadsheet
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tables (Microsoft Office Excel 2016 (Microsoft Corp, Redmond, WA, USA)). Some panoram-
ic IF images were further processed to show different IF signal intensities in four colors
(heatmap) in given ranges (blue: 10-59 px gray value (GV) (low intensity); green: 60-149
px gray GV (moderate intensity); red: 150-254 px GV (strong intensity); yellow: 255 px GV
(very strong intensity), where px GV in black-and-white images indicated intensities on a
scale from O (pure black) to 255 (pure white) with shades of gray in between. The bottom
cut-off threshold for measuring the signal area was set to 10 px GV and the expression do-
main area was calculated by summing the total number of pixels associated with individ-
ual intensity values on a scale from 10-255 px GV. The total areas of IF signal expression
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domains (HA, CD44) as well as the areas of IF signal expression domains in tissue compart-

ments were subsequently expressed as percentages (%) to facilitate comparison between
the groups of samples (controls/test group). 2D plots showing the distribution of the spatial
gradient of the IF signal as average values of IF signal intensity for every row of pixels in
the panoramic images (row size: 1px x image width) were made in the scanning direction
from marginal to apical (top-down 2D plot). Histogram tables and 2D plots for the IF sig-
nals of the general inflammatory cell marker CD45 were taken from an existing database.

Statistical analysis

Analysis of variance (ANOVA) was used to analyze the expression domains of the exam-
ined factors. Group averages were used to compare the HA and CD44 expression domains,
shown as fractions in histogram tables (one histogram for controls and one for the test
group, respectively). As the total, epithelial, and stromal expression domains of the ex-
amined factors were compared separately, no post hoc testing for the sources of potential
statistically significant differences was necessary. ANOVA was also used to analyze the
effect of section structure (relative ratio of epithelial and stromal tissue compartments in
the whole-section area) as the confounding factor in the comparison of the HA and CD44
expression domains. The consistency was examined by comparing the expression of the
examined factors in all samples within the group (separately for the control group and for
the test group). The correlation between the spatial distribution of HA and CD44 expres-
sions (independent variables) and the distribution of inflammatory infiltrate (CD45 as a
dependent variable) was analyzed with a multiple linear regression test which included
all data from the 2D plots of the test group samples. The regression model was also used to
predict the nature of the role of HA and CD44 in regulating the presence of inflammatory
infiltrate (anti-inflammatory or pro-inflammatory role). In addition, a separate regression
model of the correlation between HA and CD44 and the distribution of inflammatory in-
filtrate was made for each test group sample. Statistical analysis was made in Microsoft
Excel 2016 (Microsoft Corp, Redmond, WA, USA) and GraphPad v8 (GraphPad Software, La
Jolla, CA, USA). The statistical significance (a) for the analysis of expression domains was
set at 0.01 (P < 0.01). The statistical significance (a) for the IF signal spatial gradient distri-
bution analysis and regression models was set at 10® (P < 10®).

st-open.unist.hr
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Results

In the healthy gingiva, the HA and CD44 expression is primarily noticeable in the spinous
layer of the gingival epithelium. The HA and CD44 expression is also visible in the subep-
ithelial stroma, although not as intensely as in the gingival epithelium. The pattern of the
HA and CD44 expression in the gingiva of subjects with advanced generalized periodon-
titis is similar to that of the healthy gingiva; however, the expression of both factors is
more intense in the subepithelial stroma of diseased gingiva compared to healthy gingiva
(Figure 1; Figure 2) and this difference is statistically significant (Table 1; Table 2; Figure
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3). The comparison of the ratio of epithelial and stromal IF signals in the total expression

within each group of gingiva samples revealed that the HA to CD44 ratio in tissue com-
partments (epithelium, stroma) was similar in the control and test group and was approxi-
mately 1:1 (Figure 4). In addition to epithelial cells, HA and CD44 are expressed by various
populations of subepithelial stroma cells, including fibrocytes, vascular endothelial cells,
and inflammatory cells (predominantly plasma cells and lymphocytes in the gingiva sam-
ples of subjects with advanced generalized periodontitis) (Figure 5).
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Figure 1. Alcian blue and immuno-fluorescence (IF) panoramic images of a gingiva sample from the control group
(DK-NV2-ZK) (A-C) and a gingiva sample from the advanced generalized periodontitis group (DK-IP13-3CHP) (D-F). The
healthy gingiva shows thickened gingival epithelium (ge) and subepithelial stroma (st) with sparse perivascular inflam-
matory infiltrate (A). In the periodontitis test group, the gingival epithelium is visibly thinned. There is abundant in-
flammatory infiltrate (inf) visible in the subepithelial stroma at the interface with the alveolar bone (ab), degrading the
alveolar bone (D). The difference between the hyaluronan (HA) and CD44 receptor (B, C, E, F) expression is statistically
significant only in the subepithelial stroma section. In the images of the test group sample, the frames mark the areas of
the gingival epithelium and subepithelial stroma, enlarged and described in more detail in the heatmap IF panoramic
images in Figure 2. Magnification (A-F): x10; scale bar (A-F): 1000 um.
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Figure 2. Alcian blue and heatmap images of immune-fluorescence (IF) staining of the gingiva sample DK-IP13-CHP.
The enlarged portions of the gingival epithelium (A-C) and subepithelial stroma (D-F) within squared areas from Figure
1 are shown. In the gingival epithelium, the hyaluronan (HA) and CD44 receptor expressions are intense and spatially
overlap significantly. At the interface of the subepithelial stroma, inflammatory infiltrate and the edge of the alveolar
bone, CD44 displays a more intense expression compared to HA, especially in the inflammatory infiltrate cells (although
all cell populations in the area express both HA and CD44). Magnification (A-F): x10; scale bar (A-F): 150 um. Range of IF
signal intensity on heatmap images: blue (10-49 px GV (low intensity)); green (50-149 px GV (moderate intensity)); red
(150-254 px GV); yellow (255 px GV (very strong intensity)).

Table 1. Statistical analysis of the total, epithelial, and stromal expression domains of hyaluronan (HA) and the CD44 receptor
in the control and test group of gingiva samples

Expression domain* ANOVAt
Controls Periodontitis

R I o T U
Total 18.38 0.07 £0.11 19.01 0.08 £0.23 0,873 0,025
"'Ya('ﬁjf)”a” Epithelium 48.49 0.19 +0.27 46.44 0.190.27 0,888 0,019
Stroma 8.57 0.03 £0.06 12.79 0.05£0.08 0,008 6,891
Total 21.39 0.09 £0.17 20.61 0.08 0.15 0,824 0,049
CD44 Epithelium 56.14 0.23 £0.55 35.1 0.14 £0.41 0,052 3,793
Stroma 8.09 0.03 £0.04 16.09 0.06 £0.09 1.483x10°¢ 23,751

*The expression domains of the examined factors are shown as percentages of the whole-section area (total) or tissue com-

partment area (epithelium, stroma) and as mean values for each group of gingiva samples (control and test group).

Er(ﬁne-V)Vay ANOVA test. The significance level was set to a = 0.01 (*P < 0.01) at Fcrit = 6.687 (F > Fcrit); degrees of freedom
=1).

tExpression domains were calculated based on tabulated histograms of panoramic images, where the summed IF signal

values of the examined factors were associated with individual px ratios on a closed scale of 10-255 px GV.

§Arithmetic mean and standard deviation of individual px ratios on a closed scale of 10-255 px GV from tabulated histograms

of panoramic images.
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Table 2. Statistical analysis of the total, epithelial, and stromal expression domains of hyaluronan (HA) and CD44 receptor
between gingiva samples from the control and test group

ﬂ Expression domain*

(& Sections Tissue HA

'n_: Groupt P F P F
<t Total 1.238x107 3,666 2.291x10* 2.520
g Opinion 20 Epithelium 0,019 1,784 0,056 1,564
(a'e Stroma 0,099 1,434 0,021 1,763
5 Total 2.041x10* 2,579 1.238x10° 2,981
m Periodontitis 20 Epithelium 0,160 1,317 0,742 0,773
o Stroma 0,028 1,707 0,034 1,665

*Comparison of the expression domains of HA and CD44 receptor calculated as relative values from the whole-section area
(total) and tissue compartments (epithelium, stroma) between individual sections (n = 20) of gingival samples from the
control and test groups. The statistically significant difference between the total expression domains is mainly a result of
differences in the structure of individual sections (relative ratio of the epithelium and stroma in the whole-section area) and
has less to do with the actual variation in expression of investigated factors between samples. No statistically significant
difference within group variation was found for expression of HA and CD44 receptor in either epithelial or stromal tissue
compartments.

t0ne-Way ANOVA test for within-group consistency. The significance level was set to a = 0.01 (*P < 0.01) at Fcrit = 1.908 (F >
Fcrit); degrees of freedom (df = 19).

Based on an analysis of the general inflammatory cell marker CD45 expression from a
previous study, the presence of stromal inflammatory infiltrate was significantly higher
in gingival samples collected from subjects with advanced generalized periodontitis when
compared to that of the healthy gingiva, where inflammatory infiltrate was scarce and
narrowly limited to the perivascular tissue [15]. Since HA and CD44 play a regulatory role
in the formation and maintenance of inflammatory infiltrate, the correlation between the
spatial gradients of total HA and CD44 expression and the spatial gradient of total CD45
expression was analyzed for gingival samples collected from subjects with advanced gen-
eralized periodontitis (Figure 6; Figure 7; Table 3). No correlation was found between
the spatial gradients of total expression of HA (R = 0.0573; R? = 0.0033; P = 7.908x10"") or
CD44 (R = 0.0573; R? = 0.0004; P = 6.572x10®) and the presence of inflammatory infiltrate,
which can be explained by the fact that both examined factors are ubiquitously expressed
in all gingival tissues and their expression is, therefore, much more spatially dispersed
when compared to the expression of CD45. According to the initial (R = 0.0591; R? = 0.0591;
P =0) and fitted multiple regression model (R = 1; R’ = 1; P = 0) containing HA, CD44, and
CD45 as both independent and dependent variables, HA-knockout (mean spatial gradient
intensity of HA = 0 px) decreased (CD45HAvVKO = 0.698 px) and CD44-knockout (mean spa-
tial gradient intensity of CD44 = 0 px) increased the presence of inflammatory infiltrate
(CD45CD44vKO = 1.235 px) compared to baseline (mean spatial gradient intensity CD45 =
1.118 px). According to these regression models, HA has a pro-inflammatory and CD44 an
anti-inflammatory regulatory role in the gingiva of subjects with advanced generalized
periodontitis. The correlation between spatial gradients of HA and CD44 expression was
also analyzed, showing that spatially, these factors moderately overlap (R? = 0.3034; P = 0),
suggesting that CD44 may only partially mediate the effects and participate in HA metabo-
lism in the gingiva of subjects with advanced generalized periodontitis.
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Figure 3. Comparison of mean group values of hyaluronan (HA) (A) and CD44 receptor (B) expression domains shown
as a percentage of the whole-section area of (total expression domain) and tissue compartment area (epithelial and
stromal expression domain) in the control and test group of gingiva samples. A statistically significant difference be-
tween the groups was found when comparing the mean stromal expression domain of both examined factors.
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Figure 4. Pie charts of the distribution of epithelial (blue) and stromal (gray) signals in the total expression domains of
hyaluronan (HA) and CD44 in the control (A and B) and test group (C and D) of gingiva samples. Although the gingiva
samples in the control and test group show no difference in total HA and CD44 expression, the distribution of epithelial
and stromal signals in the total expression of gingiva samples collected from subjects with advanced generalized peri-
odontitis differs from that of the healthy gingiva. The difference in the distribution of epithelial and stromal signals is a
consequence of the increased stromal expression as well as the somewhat weaker epithelial expression of both factors
in the gingiva of subjects with advanced generalized periodontitis. However, within group comparison reveals that the
ratio of epithelial and stromal HA and CD44 signals is similar (~ 1:1) in healthy and diseased gingiva.
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Figure 5. HA and CD44 expression in populations of non-inflammatory cells in a gingiva sample collected from a sub-
ject with advanced periodontitis (DK-JN19-CHP48). The enlarged portions of the epithelial (AD) and stromal section (EF)
of the gingiva are shown. The expression of HA and CD44 receptor expressions is visible in gingival epithelial cells (ge)
and in various populations of subepithelial stroma cells (st), including vascular endothelial cells (EH, red arrows) and
fibrocytes (IL). The presented portions of the subepithelial stroma were isolated from areas containing no inflammato-
ry cell infiltrate. Magnification (A-L): x10; scale bar (A-L): 50 um.

Table 3. Correlation models for spatial gradients of the HA, CD44, and CD45 expression in gingiva samples from the test
group (linear regression)

Expression domain*

Factors*

P value R? Intercept Coefficient

X y Upper Lower
HA CD45 7.908x10% 0.0033 0,758 0,040 0,029 0,051
CD44 CD45 6.567x10° 0.0004 0,986 0,016 0,003 0,029
HA CD44 ~0 0.3034 3,665 0,646 0,631 0,662

*The examined factors are classified according to individual regression models into independent (x) and dependent (y)
variables.

tThe level of statistical significance for the regression models was set to a = 10 (P < 10%).

1The confidence interval for the coefficients is set to 99%.
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Figure 6. Correlation of the spatial gradients of hyaluronan (HA), CD44, and CD45 expression in gingiva samples collect-
ed from subjects with advanced generalized periodontitis. The x-axis shows the independent variables and the y-axis
shows the dependent variables based on complete pooling of spatially paired entries from 2D plots (100,000 entries).
The significance level (a) is set to o = 10%. No correlation was found between the spatial gradients of HA and CD45 (R =
0.0573; R? = 0.0033; P = 7.908x10%7), and CD44 and CD45 (R = 0.0195; R? = 0.0004; P = 6.571x10%). A moderate correlation
was found between the spatial gradients of HA and CD44 expression (R = 0.5508; R? = 0.3034; P = 0).
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Figure 7. Coefficients of determination in regression models for the correlation between the spatial gradient of the
expression of examined factors and the general inflammatory cell marker CD45 in gingiva samples (n = 20) from the
test group. All models are statistically significant (P < 10®), with P values ranging from 7.281x10?7 to 9.669x10"? (for
HA-CDA45 correlation) and from 1.336x1072 to 3.146x10° (for CD44-CD45 correlation). As shown above, the values of
coefficients of determination (R? are in most cases closer to zero, which means that the expression of the examined

factors weakly or very weakly correlates with the presence of inflammatory infiltrate in gingiva samples of subjects
with advanced generalized periodontitis.

Discussion

Based on the reviewed literature, the total expression of HA and CD44 was expected to be
increased in the gingiva of subjects with advanced generalized periodontitis when com-
pared to the gingiva of healthy subjects, but the results of expression domain comparison
showed comparable total expression of HA and CD44 in the healthy and diseased gingiva
[1, 7-10]. Accordingly, the overall availability of the ligand (HA) compared to that of its
major receptor (CD44) is comparable in the healthy and diseased gingiva. However, the
analysis of signal distribution in tissue compartments (epithelial and stromal expression
domains) found a slightly reduced HA and CD44 expression in the epithelium of the dis-
eased gingiva (this reduction was not statistically significant) and, simultaneously, a statis-
tically significant increase of HA and CD44 expression in the subepithelial stroma in dis-
eased gingiva when compared to the healthy gingiva. Accordingly, based on results from
our previous study, cumulative changes in the stromal expression of HA and CD44 in the
subepithelial stroma of the gingiva of subjects with advanced generalized periodontitis
occur simultaneously with the increased presence of inflammatory infiltrate [15]. On the
other hand, no correlation was found between the overall spatial distribution of either HA
or CD44 and the presence of inflammatory infiltrate in the diseased gingiva, which can be
explained by the fact that HA and CD44 are ubiquitously expressed in both gingival tissue
compartments — along with inflammatory cells, other gingival cell populations (epithelial
cells, vascular endothelial cells, fibrocytes) express these factors as well (Figure 5).

Predictions based on the regression model imply that HA and CD44 may play opposite
roles in regulating the inflammatory response in advanced generalized periodontitis,
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where HA may act as a pro-inflammatory factor and CD44 as an anti-inflammatory fac-
tor. However, since the results of the study of the potential role of HA and CD44 in the
regulation of inflammatory response in the gingiva by virtual knockout are based on the
correlation between the spatial distribution of HA and CD44 expression and the presence
of inflammatory infiltrate, they have to be considered in the light of the limitations of both
immunohistochemical visualization of tissue-specific structural changes of the examined
factors as well as the existing regression model involving a small number of variables.

Immunohistochemical staining for HA cannot determine the exact relationship between
HMWHA and LMWHA since the primary anti-HA antibody used in this study does not
bind specifically to either HMWHA or LMWHA. Therefore, it was impossible to determine
a difference in the HMWHA to LMWHA ratio (and thus a difference in HA metabolism)
between the healthy gingiva and the gingiva of subjects with advanced generalized peri-
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odontitis. However, this aspect could be examined indirectly by staining gingival tissue
with hyaluronidase-1 (Hyal-1) and hyaluronidase-2 (Hyal-2) antibodies, which act as ma-
jor enzymes in HA catabolism. An increased expression of Hyal-1 and Hyal-2 could indi-
cate an increase in HA degradation and the presence of various LMWHA fragments that
are generally known to have pro-inflammatory properties. Additionally, to elucidate the
composition of HA, it is necessary to stain for some hyaladherins, such as TSG-6 (tumor ne-
crosis factor-stimulated gene-6). More specifically, TSG-6 binding to HA can modulate the
affinity of HA for its cell surface receptors, as well as the adhesiveness of HA itself, which
impacts the activation, migration, and retention of inflammatory cells in the tissue [3, 20].
Since there is an increase in inflammatory cells in the gingiva of subjects with advanced
generalized periodontitis, the presence and/or spatial distribution of hyaladherin-contain-
ing HA complexes can be expected to differ from that of the healthy gingiva.

Similar to HA, the structure of its major cell surface receptor, CD44, is heterogeneous and
depends on the type of CD44-expressing cells and the dynamics of physiological processes
in the tissue. CD44 is extremely susceptible to post-translational modifications, which im-
plies differing degrees of glycosylation of this receptor — in addition to HA, other types of
GAGs can bind to the extracellular domain of CD44 and thus modulate the affinity of the
HA-CD44 bond [4]. Additionally, various CD44 isoforms have been described. Apart from
the most common, standard isoform of CD44 (CD44s), there are other, variable isoforms
(CD44v1-10) resulting from alternative splicing during the CD44 gene transcription [4].
Epithelial cells and activated inflammatory cells can (in addition to CD44s) simultaneous-
ly express combinations of several different variable isoforms, some of which (such as
CD44v7) are associated with the pathogenesis of chronic inflammatory diseases and ma-
lignant tissue alteration [21]. In this study, a primary antibody that binds to an epitope on
the cytoplasmic domain of this receptor and therefore non-specifically stains all CD44 iso-
forms was used to stain gingival samples for CD44. To provide a more accurate description
of the spatial relationships between the expression of this receptor and the presence of in-
flammatory infiltrate in the gingiva during advanced generalized periodontitis, addition-
al staining for variable CD44 isoforms with commercially available antibodies should be
carried out. Consequently, the prediction of anti-inflammatory role of CD44 in advanced
generalized periodontitis based on virtual knockout as presented in this study should be
carefully re-examined in the future by more comprehensive regression models. Additional
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staining with antibodies against HA biosynthesis and metabolism enzymes, as well as with
antibodies against CD44 isoforms and other HA receptors could improve the existing mod-
el and make predictions more accurate. It should also be noted that previous research on
models of various inflammatory diseases in experimental animals has shown that CD44
(similar to HA) may play a dual role in the regulation of inflammation. More specifically,
both anti-inflammatory and pro-inflammatory effects may be achieved, depending on the
mechanisms of the introduction of noxious stimuli and methods of blocking the activity of
CD44 (either by antibodies or by classical gene knockout) (9). Interestingly, the described
effects of CD44 blocking on the course of inflammation are not always accompanied by
changes in HA metabolism/catabolism in terms of total HA in tissues, although CD44 does
have a significant role in catabolism/elimination of HA [22].

In conclusion, the absence of differences in HA and CD44 expression between healthy and
diseased gingiva may be explained by a certain decrease in the expression of these factors
in the epithelial tissue section, and a compensatory increase in their expression in the
subepithelial stroma in diseased gingival samples. Although the overall spatial gradients
of HA and CD44 expression cannot be directly related to the presence of inflammatory in-
filtrate in the subepithelial stroma of the diseased gingiva, the examined factors may nev-
ertheless be described as potential regulators of the inflammatory response in advanced
generalized periodontitis. This conclusion is based on the observation that inflammatory
cells (similar to other populations of gingival cells) also express HA and CD44. Although
HA is predicted to play the pro-inflammatory role and CD44 the anti-inflammatory role
based on the regression model, further research is needed to elucidate the influence of
these factors on the course of inflammation in advanced generalized periodontitis and
thus advance our understanding of pathogenetic mechanisms underlying periodontal
disease. In order to make the predictions based on the regression model as accurate as
possible, data on the spatial expression of all factors involved in metabolism and cellular
signaling via HA (enzymes for HA biosynthesis and post-biosynthetic modifications of HA,
hyaldherins and cell surface HA receptors) should be incorporated in future models. In
clinical practice, native HA preparations are used as auxiliary substances after surgical
and non-surgical periodontitis treatment [11]. The effectiveness of these preparations is
based on the positive effects of increased HMWHA levels in the tissue on the speed of post-
operative healing of periodontal tissue. Due to the limitations of this study, the difference
in the ratio of HMWHA and LMWHA in the gingiva in advanced generalized periodontitis
and that of healthy gingiva could not be determined; however, the results suggest that
inflammation in advanced generalized periodontitis does not affect the total HA levels in
the gingiva. This means that the novel pharmaco-therapeutic approaches to modulating
the inflammatory response in periodontal disease based on HA for the purposes of clini-
cal practice should take into account other aspects related to the metabolism and cellular
signaling of HA.
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