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Aim: Hashimoto’s thyroiditis (HT) is a common but poorly
understood autoimmune disease. Here, we aimed to iden-
tify differentially expressed genes and biological signaling
pathways associated with HT by comparing whole genome
transcriptomes from affected and healthy donors.

Methods: As part of a case—control design, we analyzed
thyroid tissue RNA sequencing libraries from the Genotype-
Tissue Expression Project (v8 release). Donors were di-
vided into two demographically and technically matched
groups according to the presence (n=31) or absence of
histopathologically confirmed HT in their thyroid tissue
samples (n=73). Differential gene expression analysis was
performed, followed by pathway enrichment profiling
(Hallmark, Kyoto Encyclopedia of Genes and Genomes).

Results: In total, we identified 2,809 upregulated genes and
2,348 downregulated genes (fold change >1.5, Benjamini-
Hochberg adjusted P<0.05). HT was characterized by path-
ways associated with T- and B-cell signaling, antigen pro-
cessing, cytokine-cytokine receptor interactions, phagocytic
responses, and cell death. The transition to HT was accom-
panied by a decreased expression of gene sets related to cell
junctions, cell polarity, epithelial and anabolic processes, re-
dox homeostasis, mitochondrial health, and Hippo signaling.
Loss of endothelial cell characteristics and positional mark-
ers of perivascular fibroblasts followed closely thereafter.

Conclusions: The local expansion of cellular, humoral and
innate immunity is a hallmark of HT. Cell death dominated
the scene, followed by signs of epithelial, endothelial and
stromal remodeling of thyroid tissue. This included recipro-
cal contraction of the terminally differentiated epithelium
and (perivascular) endothelium amidst increasing autoim-
mune activity. Widespread changes in gene activity were
observed in various homeostatic processes, including cell
metabolism, cellular energetics, and anabolic and catabolic
metabolic pathways.

Keywords: autoimmune; computational biology; gene ex-
pression profiling; RNA-seq; thyroiditis; whole genome se-
quencing
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Introduction

Hashimoto’s thyroiditis (HT) is a common autoimmune disease characterized by the grad-
ual replacement of thyroid follicular architecture by scar tissue and lymphoplasmocytic
aggregates (1, 2). It occurs predominantly in middle-aged women and shows a strong fa-
milial segregation, as well as a highly variable course of disease. In most patients, thyroid
hormone levels are well maintained in the initial phase; over time, life-threatening prima-
ry hypothyroidism often develops (1, 2). The etiology of HT remains poorly understood (3),
and there are currently very few treatment options beyond lifelong hormone replacement
therapy (4), which is often insufficient to restore well-being and overall quality of life
(5-7). Thyroid autoimmunity is also associated with pregnancy complications affecting
both mother and child (8, 9) and, more importantly, with an increased risk of developing
thyroid malignancies (10, 11). There is therefore an urgent need to improve our under-
standing of the biology of HT.

To achieve this, HT research has recently turned to more advanced technologies, such
as next-generation sequencing of bulk tissues and single-cell RNA sequencing (RNA-seq).
Both methods allow comprehensive profiling of gene expression on a genome-wide scale
and offer a unique opportunity to gain insights into changes in cellular composition and
gene activity of complex tissues (12, 13). Consequently, RNA-seq has radically changed our
understanding of inflammatory diseases (12, 14), but its application in HT remains modest
(15-17). To date, the highest resolution has been achieved in immune cell lines infiltrating
the thyroid gland (15-17). In contrast, the epithelial and mesenchymal niches have been
comparatively understudied (16-18), due to the low cellular recovery of follicular and
stromal components in the single-cell protocols currently in use. In addition, RNA-seq is
highly sensitive to technical and biological confounding factors (19-22), sample size and
computational details (23), making interpretation of the data an extremely complex task
(15). Therefore, it remains difficult to draw a comprehensive picture of HT based on the
information from these studies alone, and the simultaneous remodeling of the epithelium,
immune system and stroma has yet to be replicated in a single study (17).

Here, we used publicly available whole genome RNA-seq libraries of thyroid tissue from
the Genotype-Tissue Expression (GTEX) project (24, 25) to systematically compare the gene
expression profiles of affected individuals with those of healthy donors. Our aim was to
better characterize the cascade of transcriptional events and to investigate the extent of
thyroid tissue remodeling in HT. To this end, we performed an unbiased screening of deep-
ly phenotyped and carefully annotated datasets (26), supported by the extensive literature
on best practices in GTEx data (19-22, 24-26).
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Methods

Participants

A total of 104 tissue donors were included in this case-control study. Donors were divid-
ed into two independent groups based on the presence or absence of histopathologically
confirmed HT in their thyroid tissue samples. The whole-genome gene expression profiles
of the thyroid tissue were then integrated, harmonized and compared between the two
groups to search for differentially expressed genes and associated biological pathways.
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Materials

The study material consisted of whole-genome thyroid tissue libraries (expression matri-
ces, dbGaP phs000424.v8.p2) and associated metadata. The following attributes were re-
corded for each donor: pathology reports, agonal characteristics, technical characteristics,
sample processing characteristics and the first five principal components of the genotype
(PC1-5). The PC1-5 components provide information about the structure of the donor popu-
lation in whole-genome genotyping (25). Digitized microscopic images of hematoxylin and
eosin-stained thyroid tissue sections from HT patients (Aperio, Leica Biosystems) were
downloaded from the GTEXx portal. The photomicrographs were visualized using QuPath
v0.2.0-m9 (https://github.com/qupath, University of Edinburgh, UK). Anonymous and
de-identified RNA-seq data were obtained from the GTEx Project Repository (v8, https://
gtexportal.org/home/datasets). The study was approved by the Ethics Committee of the
Faculty of Medicine in Osijek (REG. NO. 2158-61-46-22-89; April 30, 2022).

Of the 574 libraries classified as thyroid tissue (UBERON0002046), 184 control samples and
37 thyroid samples showing histopathologic features of HT were selected for further anal-
ysis. Degraded samples, mislabeled libraries, neoplasms, thyroid tissue samples with non-
specific changes, and contaminated samples with large vessels, thymus, muscle, adipose
tissue, and parathyroid tissue were excluded from the selection (22, 26). After adjusting for
confounding factors (age, sex, agonal classification on the Hardy scale (27), RNA integrity,
collection facility, and ischemia time), the final comparison included 73 normal and 31
affected tissue libraries. All libraries were independent (one library per unrelated donor),
and all donors were over 21 years of age, with a postmortem interval of less than 24 hours.

RNA sequencing

In brief, RNA sequencing was performed using the llumina TruSeq protocol (non-strand-
ed, polyA+ selection; Broad Institute; HiSeq 2000 or HiSeq 2500) on 200 ng of total RNA
extracted from 0.5-2 g of thyroid tissue (PAXgene Tissue miRNA Kit, PreAnalytix, Qiagen).
The target coverage was ~50 million 76-bp reads (24, 25).

RNA read quality, alignment, and quantification

The RNA quality after fixation (PAXgene Tissue FIX, Qiagen) was assessed using the RNA
Integrity Number (RIN; Agilent Bioanalyzer), with an exclusion threshold of RIN<5.5 (24,
25). Alignment to the human reference genome (GRCh38/hg38) was performed using STAR

st-open.unist.hr
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v2.5.3a with GENCODE v26 annotations (56,200 genes). Gene-level quantification was per-
formed by collapsing all gene isoforms into a single transcript.

Gene expression analysis

Expression values were normalized to the effective library size using the Trimmed Mean of
M-values (TMM) approach (28) from the edgeR package (29). Variance stabilization was per-
formed using a rank-based inverse normal transformation (30). Systematic variation (31)
was corrected by applying the function removeBatchEffect (first three genotype PCs + hidden
factors). Hidden factors (representing batch effects) were identified by nonparametric mod-
eling of the expression matrix using the DASC package (convex clustering and nonnegative
matrix factorization, regularization parameter lambda=103-10", factorization rank=2-10,
optimal rank according to cophenetic coefficient=3, L2 penalty, 100 initializations) (32).

Transcriptome comparison between HT patients and healthy controls

We tested for differential expression using linear modeling with Bayesian modulation in
the limma package (33-35). Compared to other methods, the ImFit function is particularly
robust for small samples. We defined differential expression as an absolute fold change
(|FC|) greater than 1.5 and corrected for a false discovery rate (FDR) less than 0.05 using
the Benjamini-Hochberg procedure.

Biological pathway analysis

Biological pathway analysis (Hallmark and C2 sets (36) from the MSigDB v7.4 collection
(37)) was performed using a list of differentially expressed genes as input. The significance
threshold was set to FDR<0.05 (1,000 permutations) for gene sets with at least 10 genes
(38). Visualization of the C2 pathway (Kyoto Encyclopedia of Genes and Genomes) was
performed using the Pathview package under the GNU General Public License (>3.0) (39).
The lists of differentially expressed genes were also matched with a table of cell mark-
ers (Azimuth 2023) (40) and tissue-related transcripts (Human Gene Atlas) from Enrichr
(https://maayanlab.cloud/Enrichr/) (41). The list of stem cell-associated signatures was ob-
tained from StemChecker (http://stemchecker.sysbhiolab.eu/) (42).

Gene symbol conversion was performed using the biomaRt package (HUGO Gene
Nomenclature Committee/HGNC — Ensembl/ENSG, H. sapiens). Gene and transcript classifi-
cation was based on the Ensembl r105 release. HGNC symbols were used for gene naming
throughout the text. The list of matrisome components was retrieved from the M5889 set
(the MSigDB collection, Naba_matrisome).

Statistical analysis

Continuous data (demographic and technical attributes) were summarized using the me-
dian and interquartile range. Categorical data are presented as absolute frequencies and
proportions. Contingency tables were analyzed using Fisher’s exact test. For non-genom-
ic continuous variables, the Mann-Whitney test was used to examine the difference be-
tween the two independent samples. The nonparametric correlation analysis was based
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on Spearman’s rank test. All P-values were two-sided, with post-hoc correction for the

number of tests described above. Unless otherwise stated, adjusted P-values are reported

throughout the text. The Multivariate and Propensity Score Matching Software for Causal

Inference was used to adjust for confounding factors (43). Results were visualized using
the packages ComplexHeatMap v2.6.2, RColorBrewer v1.1-2, EnhancedVolcano v1.12.0 and

ggpubr v0.4.0 in R, version 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria).

Results

The final analysis included a total of 21,077 genes with unique HGNC symbols. Table 1
shows the demographic characteristics of the donors and technical details of the samples.

The clear separation between affected and control participants indicates a global differ-

Table 1. Donor demographics with sample processing details (n = 104)*

Attributes

Sex

Age (years)

Autolysis score (SMATSSCR)

TISCH (SMTSISCH)
PAX (SMTSPAX)
RIN (SMRIN)

Center (SMCENTER)

Agonal category (OTHHRDY)

Total mapped reads (SMMPPD)

Category/unit
Male/female
20-29
30-39
40-49
50-59
60-69
0 (no autolysis)
1 (mild)

2 (moderate)
min.

min.

B1
C1
0 (ventilator case)

1 (fast death, violent)
2 (fast death, natural)
3 (intermediate, ill)
4 (slow death)

x 107

13
5
22
4
452 (121-951)
824 (653-1089)
6.9 (6.4-7.3)
23
8

19

1
1

7.66 (6.39-9.24)

Controls (n=73)

17
19
27
3
59
1
449 (163-706)
776 (631-1077)
6.7 (6.2-7.2)
52
21
45
1
17
3
7

7.83 (6.95-8.99)

0.670
0.865¢

0.182

0.924
0.582
0.935

0.815¢

0.762%

0.541

*TISCH - ischemic (post-mortem) interval, PAX - time spent in PAX fixative, RIN — RNA integrity number, Center - sampling
institution. The labels in parentheses are the original abbreviations for specific attributes. Continuous variables are presented

as medians with interquartile ranges.
tMann-Whitney test.

tGeneralized Fisher exact test (Freeman-Halton extension).
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ence in gene expression between diseased and healthy thyroid tissue (Figure 1). Most of
those affected were women over the age of 40, although age and gender were similarly
distributed in the control group. The lowest RIN score was 5.5 and the highest recorded
score was 9.7. Ten donors had histologically severe/diffuse HT, nine had focal areas of lym-
phocytic thyroiditis, and the remainder were classified as moderate HT (Figure S1 in our
online dataset (44)). Broadly speaking, late-stage HT was associated with higher transcrip-
tional variability, but none of these subgroups were large enough to support subgroup
analysis. There were no significant differences between groups in terms of sample pres-
ervation, ischemia time, tissue fixation, or cause of death. Sequencing depth was similar
in both groups.

2.0

1.0

i

0.0

Log2 fold change

-1.0

Upregulated
= Downregulated

06 | -02 02 04 06
Average expression

20

15

10

-1og10 (FDR)

m Upregulated

m Downregulated
40 | 00 05 10 15 20
controls log2 fold change

Figure 1. Overview of differentially expressed genes. Panel A. Hierarchical clustering (Euclidean distance, meth-
od =complete linkage). Lighter shades correspond to higher expression levels. Panel B. Bland-Altman representation of
differentially expressed genes. FDR — false discovery rate (Benjamini-Hochberg), HT - Hashimoto’s thyroiditis. Created
using ComplexHeatmap R package (https://www.rdocumentation.org/packages/ComplexHeatmap/versions/1.10.2).

Among differentially expressed transcripts (FDR<0.05, |FC|>1.5), 2,809 genes showed
significantly higher and 2,348 significantly lower expression in the affected thyroid tis-
sues (Figure 1), with the top 45 hits from both lists presented in Table S1 in our online
dataset (44). Protein-coding genes were the most abundant transcript type, followed by
long non-coding RNAs and immunoglobulin variable regions, as presented in Table S2
in our online dataset (44). The results of the biological pathway analysis for the C2 and H
sets from MSigDB are summarized in Table 2 and Table 3, respectively. Pathway analysis
revealed that activation of the immune system was paramount (T cell and B cell signaling,
Figure 2, along with cell death and cytotoxicity-related processes (Figure 3, Table 2).
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Table 2. Pathway analysis, MSigDB v7.4, Kyoto Encyclopedia of Genes and Genomes*

Enriched Depleted
Process Process Ll
No. genes 2 No. genes Pt —
=
Cytokine-cytokine recep- 4+ Oxidative phosphory- R . =
tor interactions 2.65 227 1.8x10*  ion 2.60 110 3.6x10* S(:
Natural killer cell-medi- 4+ AMPK signaling path- } .
ated cytotoxicity 2.57 87 1.8x10* way 2.12 111 3.6x10* g
o
Th1 and Th2 cell differ- 4 ) 4 <t
entiation 2.44 72 1.8x10* Autophagy 1.96 133 3.7x10 i
(9p]
T cell receptor signaling 2.41 95 1.8x10* Hippo signaling pathway  -1.90 27 4.8x10°% &
Th1 cell differentiation 2.37 84 1.8x10* Adherent junctions -1.85 68 1.2x103
L 4+ Insulin signaling R '
B cell receptor signaling 2.37 66 1.8x10* pathway 1.80 128 3.7x10*
Chemokine signaling 2.36 169 1.8x10* Mitophagy -1.80 65 2.9x10°%
NF-kappa B signaling 4+ Selenocompound ) 2
pathway 2.23 96 1.8x10% o bolism 1.79 15 1.6x10
Cell adhesion molecules 2.20 118 1.8x10* Tight junctions -1.77 150 3.9x10*
Processing and presen- 4+ Pentose phosphate B ’
tation 1.97 36 8.6x10* pathway 1.74 24 2.1x10?
Autoimmune thyroid 3 MTOR signaling path- ) .
disease 1.96 16 1.7x10° way 1.69 143 9.7x10*
Complement and coagu- 1 gg 67  5.6x10¢ Glutathione metabolism  -1.68 4 1.6x102
Necroptosis 1.86 121 3.6x10* Fatty acid metabolism -1.61 52 2.3x10?
Leukocyte transendo- . ; ) '
thelial migration 1.80 103 5.9x10* Focal adhesions 1.55 193 3.2x10°
Apoptosis 1.80 128 4.6x10* Axon guidance -1.54 170 3.0x10°
Fc receptor-mediated 3
phagocytosis 1.76 86 2.5x10
TNF signaling pathway 1.66 103 5.1x103
Cell cycle 1.51 119 2.2x10?

*Abbreviations: Th - T helper, NES - normalized enrichment score, mTOR - mammalian target of rapamycin, AMPK 5’ - adenos-
ine monophosphate-dependent protein kinase, NF - nuclear factor, TNF - tumor necrosis factor.
tCorrected P-value.

Table 3. Pathway analysis, MSigDB v7.4, Hallmark*

Enriched expression Depleted expression
Process Process
= No. genes Pt = No. genes Pt
I 5 Oxidative .
Allograft rejection 3.12 175 6.9x10° phosphorylation -2.69 198 1.7x10*
Interferon-gamma 5 . . } 4
response 2.90 185 6.9x10° Protein secretion 2.65 95 1.6x10
Interferon-alpha 5 . . B 4
response 2.56 89 6.9x10° Adipogenesis 2.38 196 1.7x10
'nLafii;]'g\K STATS sig- 2.47 83 6.9x10° Fattyacid metabolism  -2.11 151 1.7x10°
5 Reactive oxygen i '
Inflammatory response 2.45 189 6.9x10°% species 1.81 45 3.4x10°%
Complement 2.09 187 6.9x10° Myogenesis -1.74 188 1.7x10*

st-open.unist.hr
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Table 3. (continued)

Enriched expression Depleted expression
Process Process
NES No. genes Pt No. genes Pt

IL2 STATS5 signaling 2.03 96 6.9x10° Androgen response -1.46 98 2.4x10?
THEA signaling via 2.03 190 6.9x105 Xenobiotic metabolism  -1.37 179 1.9x10?
E2F targets 2.02 197 6.9x10° Glycolysis -1.35 190 2.0x10?

! ; 5 Epithelial-mesenchymal ’
G2-M checkpoint 1.8 197 6.9x10° transition 1.34 199 2.1x10?
KRAS signaling up 1.7 188 1.6x10*
P53 pathway 1.39 197 3.3x10?

*Abbreviations: NES - normalized enrichment score, IL - interleukin, JAK - Janus kinase, STAT - signal transducer and activator
of transcription, TNF - tumor necrosis factor.
tCorrected P-value.
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Figure 2. The expression of genes related to the B cell receptor and the distal signaling pathways in the thyroid gland.
The figure was generated using the Pathview package under the GNU General Public License (> 3.0), based on data from
the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene symbols and their respective names are available at https://
www.genenames.org/.
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Figure 3. Normalized gene expression of cytotoxic-natural killer cell markers. The figure was generated using the
Pathview package under the GNU General Public License (>3.0), based on data from the Kyoto Encyclopedia of Genes
and Genomes (KEGG). Gene symbols and their respective names are available at https://www.genenames.org/.
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In addition to the T-cell receptor (TCR) chains of conventional (TRAV1-27¢¢) af3-T cells, the
expression of gamma-chain TCRs (TRGV2/5/7/9-10, TRGC1) was significantly increased.
Among the lineage-specific markers (Figure 4), the master regulators of T-helper (Th) type
1 and 2 responses were highly enriched. In the B cell lineage (MS4A1, CD79A), the telltale
markers of activation and maturation were particularly present (cells of the light and dark
zone of the germinal center, plasmablasts, activated and memory B cells). In addition to
lymphoid immunity, myeloid markers were also enriched, indicating the presence of mac-
rophages and dendritic cells (FDCSP, log,FC=1.21, P=2x10?, Figure 4) (45).

Among the highly enriched cytokine gene transcripts, as presented in Figure S2 in our
online dataset (44), chemotaxis, adhesion and migration were prominent in functional
analysis, followed by transendothelial recruitment, lymphoid organization (CCL19, log-
,FC=1.22, P=4.3x10? CXCL9, log,FC=1.39, P=3.9x10"?) and tissue retention of inflam-
matory cells (16).

Among the downregulated gene transcripts, loss of key components that support cellular
architecture and tissue maintenance was evident, along with loss of genes for planar cell
polarity (PCP4, FAT4, CELSR2, RYK, PHACTR4; -0.7 <log,FC<-0.6, 0.0018 <P <0.0066) and in-
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Figure 5. Gene expression from the iodine organification and thyroxine biosynthesis pathways in thyroid tissue. Green
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names are available at https://www.genenames.org/ (HGNC symbols).

04912 5/18020
{c) Kanehsa Laboratories



http://st-open.unist.hr

2025 Vol. 6 * €2025.2219.27

tercellular communication (Table 2) (46). Overall, a significant reduction in thyroid-relat-
ed characteristics was observed (P=5.8x10°, Human Gene Atlas).

Epithelial markers were significantly overrepresented among the downregulated tran-
scripts, reflecting a systematic deviation in the expression of transcriptional regulators
(NKX2-1, PAX8) and canonical markers of terminally differentiated thyroid follicular cells
(DIO1, TSHR, TG, TFF3; Table S1, (44)). In addition, there was a pronounced loss of iodine
transport and thyroxine biosynthesis (TPO, DUOXA2, IYD/DEHAL1, TG, SLC26A7, SLC26A4/
PDS) (Figure 5). Besides thyroid epithelial markers a clear loss of endothelial features was
observed (CDH5, TIE1, PTPRB, EDNRB, PLVAP, PDPN, PROX1; Table S3, (44)), along with
reduced angiogenic signaling (VEGFA-FLT1/VEGFC-FLT4), loss of perivascular fibroblastic
positional markers (NOTCH3, SPARC, CD36, STEAP4; Figure S1 and Table S3) (44, 47, 48),
and decreased expression of COL4A1 (log,FC=-0.69, P=2.8x10?) and COL18A1 (log,FC=-0.6,
P=5.8x107%), two collagens that underlay the epithelial and endothelial cell sheets. The loss
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of homeostatic basement membrane collagens was mirrored by over-transcription of the
genes for type VII (COL7A1, log,FC=0.83, P=1.7x10*) and type XXII (fibril-associated) col-
lagen (COL22A1, log,FC=0.73, P=9.6x10*).

The mechanisms of follicular and endothelial cell death are still largely unknown.
Possible mechanisms include complement-mediated lysis, which usually depends on an-
tibodies (Figure 6, Table 2, Table 3) and apoptosis as an expression of cellular cytotox-
icity (Table 2).

Beyond these pathways, transcripts encoding components involved in cellular necroptosis
have also been identified, suggesting that there may be an additional level of complexity
under specific circumstances, as presented in Table 2 and Figure S3 (44). In addition, there
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Figure 6. Normalized gene expression, the coagulation pathway (a) and complement pathway (b) in diseased thyroid
tissue. The figure was generated using the Pathview package under the GNU General Public License (> 3.0), based on data
from the Kyoto Encyclopedia of Genes and Genomes. Gene names are available at https://www.genenames.org/ (HGNC
symbols).
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was disruption of glutathione metabolism (Table 2) and loss of oxidative stress-responsive
detoxification (Table 3), both of which play a central, cytoprotective role in maintaining thy-
roid follicular cell redox homeostasis. Metabolically, downregulation of anabolic processes
(mTOR signaling, insulin signaling, pentose phosphate pathway) coincided with transcrip-
tional dysregulation of autophagy (Table 2), mitochondrial dysfunction, impaired oxida-
tive phosphorylation (Figure 7, Table 2, Table 3), and altered lipid catabolism (B-oxidation)
(15). Apparently, many transcripts associated with stem cell biology were also lost (Table
$4, (44)), including B-catenin (CTNNB1), a canonical signal transducer from the Wingless
signaling pathway (log,FC=-0.64, P=2.9x107%), the Wingless co-receptor LRP6 (log,FC=-1.18
P=1.7x10%®) and Leucine-Rich Repeat-Containing G protein-Coupled Receptor 5, a Wingless
target (LGRS, log,FC=-0.89, P=5.9x107®). In contrast, a pronounced increase in downstream
signaling was observed along the TNFa and interferon-a/y pathways (Table 3).
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Figure 7. Mitochondrial electron transport chain (oxidative phosphorylation), normalized gene expression in diseased
thyroid tissue. The figure was generated using the Pathview package under the GNU General Public License (> 3.0), based
on data from the Kyoto Encyclopedia of Genes and Genomes. Gene names are available at https://www.genenames.org/.

In addition to the cell-intrinsic transcriptional reprogramming, there were also signs of
extensive remodeling of the extracellular matrix, as visible in Figure S4 (44). The loss of
expression of epithelial markers was accompanied by a strong induction of important fi-
brogenic factors, such as the transforming growth factor TGFB1 (log,FC=0.96, P=4.4x10°,
EPCAM vs. TGFB1, Spearman’s p=-0.3, nominal P=0.002). The increased expression of ly-
sosomal cathepsins (CTS), lysyl oxidases and members of the metalloproteinase superfam-
ily (MMP, ADAM, and ADAMTS proteases) indicates an active remodeling of the cellular
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microenvironment, as shown in Figure S4 (44). Of the 214 differentially expressed genes
belonging to extracellular matrix components, 139 were overexpressed.

Discussion

In this study, high-quality whole-genome transcriptomes were used to compare gene ex-
pression in healthy and diseased thyroid tissue. The samples reviewed contained detailed
donor data, allowing advanced corrections to reduce bias. Documented GTEx procedures
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ensure reproducible, systematic RNA-seq analysis and provide structured approaches for

end users (26).

The comparison shows that extensive transcriptional remodeling occurs in thyroid tis-
sue affected by HT, encompassing multiple cell lineages. No cellular niche was spared,
with epithelial and endothelial compartments shrinking under the autoimmune assault.
Particularly striking is the marked increase in transcripts associated with adaptive im-
munity and lymphoid organogenesis (T cells, B cells, plasma cells) (16, 17, 49-51), accom-
panied by increased innate phagocytic activity (52, 53). Both Th1 and Th2 T cell programs
have been observed, from transcriptional regulators to cytokines (3, 54, 55), alongside
non-canonical y8 T cells (56), whose role remains unclear (57). There was also evidence of
inflammatory cell recruitment, antigen presentation (58, 59), complement activation, an-
tibody-dependent cytotoxicity, perforin/granzyme-mediated cytolysis and pro-apoptotic
signaling (3, 60), consistent with and extending previous findings (3, 61-63). These results
emphasize that GTEx and bulk RNA-seq are valuable resources when used carefully and
provide a unified framework linking previous studies of candidate genes, genetic associa-
tions, and animal disease models (54).

This study expands the catalog of downregulated transcripts and highlights the loss of sig-
nature markers for mature follicular epithelial cells (17, 18, 64, 65), decreased expression
of molecules critical for epithelial communication, and disruption of the thyroxine bio-
synthetic pathway (66). These findings are consistent with histologic evidence of epithelial
destruction and loss of follicular architecture (7, 3), but have often remained elusive in
recent mapping efforts (15, 16). We also found transcriptional evidence of mitochondrial
(15) and ciliary remodeling (67-69), impaired oxidative phosphorylation, impaired ana-
bolic metabolic pathways, and altered planar cell polarity (69, 70). These results comple-
ment the data on the defects in proteostasis (15, 71, 72) and autophagy (73) and provide
further details on the functional impairments (18). However, the underlying cellular phe-
notypes remain unclear, as thyroid follicular cells likely exist in transitional states along
the epithelial-mesenchymal continuum (17, 18, 64, 65, 74). The effects of HT on epithelial
cell composition remain unexplored.

Theloss of epithelial markers was accompanied by evidence of endothelial cell dysfunction,
with significant but uneven downregulation of canonical endothelial (75) and pericyte
markers, suggesting (peri)vascular remodeling of the angiofollicular unit (76, 77). These
findings are broadly consistent with concepts of stromal and endothelial reprogramming
in malignancy and inflammation (48, 78, 79). In such context, perivascular populations
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may also act as precursors of specialized fibroblasts (16-18, 80), but the fate of the endo-
thelial compartment in HT and its role in thyroid repair or fibrosis remains unclear.

Extensive transcriptional remodeling of the extracellular matrix was observed, including
the loss of basement membrane collagens and their replacement by newly produced ele-
ments (81). Altered expression of enzymes that regulate collagen deposition, cross-linking
and matrix turnover was a striking feature of HT thyroids (17). Numerous soluble mole-
cules and growth factors with known roles in stromal and epithelial homeostasis, wound
healing and stem cell biology were identified (46, 77, 79, 82, 83), linking epithelial-stromal
interactions (16-18) to differentiation of epithelial stem cells in specialized niches (84, 85).
The extent of gene deregulation associated with stromal remodeling is consistent with
thyroid fibrosis, a hallmark of HT, but provides a deeper understanding of the follicular
microenvironment. A complete single cell count of thyroid fibroblasts remains an unmet
need.

This transcription atlas provides valuable biomarkers but has important limitations. The
results have not been replicated in independent cohorts and no immunohistochemical val-
idation of the markers has been performed, which is important because mRNA levels do
not always correlate with protein expression or cell phenotypes. RNA-seq cannot resolve
cell-specific gene expression and requires single-cell RNA-seq or scATAC-seq, especially to
detect rare cell populations. Combining RNA-seq samples across different histologic stages
of HT can highlight large effects while masking subtle changes. Most of the donors were
older women, limiting broader applicability. Some of them probably received L-thyroxine
(T4), which may affect the expression of inflammatory genes to a small extent (86), al-
though it has no effect on overall disease progression.

This study improves and extends the current knowledge of the extent of gene deregula-
tion in thyroid tissue affected by HT. The result of this work is a transcriptomic atlas that
improves our understanding of the biology of HT and provides a basis for future transla-
tional research.
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