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Aim: To develop a simple algorithm that accurately con-
structs and simulates an Alvarez-type linear accelerator giv-
en the initial conditions and number of accelerator parts.

Methods: We wrote the algorithm in Python, a programming 
language with numerous useful math and science libraries, 
and the ability to use classes and objects. The particles were 
accelerated in electric fields (which we assumed to be con-
stant within each cavity at any given moment) to allow for 
a comparison of numerical results with an analytic expres-
sion. No magnetic fields were present in the simulations 
used in this article, and the particle beams were instead fo-
cused by using collimators. The algorithm first constructed 
the accelerator by guessing the appropriate length of each 
segment until it found optimal lengths for accelerating most 
particles in the beam. Once constructed, the accelerator 
could accelerate beams of particles and the results could be 
analyzed.

Results: The algorithm successfully constructed multiple dif-
ferent accelerators from the initially given conditions. The 
first two simulations had arbitrary accelerators in which 
hydrogen and lead ions were accelerated, and the results 
were in line with expectations from the analytic solution. 
The largest simulation was that of CERN’s Linac4 acceler-
ator, which produced results similar to those found in the 
real world.

Conclusion: Significant results could be obtained even with 
an algorithm as simple as the one described here. The algo-
rithm could be further improved by using a more realistic 
potential inside the accelerator cavities, and more particles 
could pass through if magnetic fields which focus the beam 
were turned on.
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Introduction

Until the invention of particle accelerators, elementary particles could only be studied by 
observing cosmic rays. After the invention of the electrostatic particle accelerator, Gustav 
Ising proposed the first particle accelerator using an alternating voltage source in 1924 
[1], which was constructed two years later by Rolf Widerøe [2]. The aim was to let charged 
particles pass through regions where they would be accelerated by an oscillating electric 
field during time intervals when the field is directed so as to speed up the particles, after 
which they would enter drift tubes where they are protected from external fields which 
would slow them down. When the fields were correctly directed again, the particles would 
be released into cavities where they are accelerated. The next significant improvement 
in linear accelerator (linac) technology came after World War 2 with the invention of ra-
dio-frequency cavities, which could be used as a voltage source [3]. The first such acceler-
ator was constructed by Alvarez in 1946 [4].

We hypothesized that a simple algorithm that successfully constructs and simulates an 
Alvarez-type linear particle accelerator could be developed, considering the type of par-
ticles used, initial conditions, and the maximum voltage inside the cavities between drift 
tubes. By utilizing these variables, the algorithm would determine the appropriate length 
of accelerator parts and the distances between them, focusing on the distances between 
the tubes where the particle speeds are not constant, which are otherwise harder to find, 
as the problem cannot be solved analytically. Upon successful construction, the acceler-
ator can be applied to a significantly larger number of particles, allowing for a more de-
tailed analysis of the results, such as examining the energy and velocity distributions of 
the accelerated beam of particles and assessing the number of particles that successfully 
passed through the accelerator.

Methods

Relativistic mechanics

Since particles in accelerators can reach very high energies, it is necessary to use relativ-
istic equations of motion. The entire simulation is observed from the laboratory reference 
frame, and since only charged particles are used, the strongest external force exerted on 
each accelerated particle in the beam is the external Lorentz force:

	 →
F = q

→
E + q→ν × 

→
B (1)

where 
→
F is the 3-force from classical mechanics, q is the charge of the particle, →ν is the 

particle velocity, and 
→
E and 

→
B are the electric and magnetic fields at a given point in space, 

respectively. However, we only focused on cases where the magnetic field is set to 0.

All perturbations on the system are ignored, so only the Lorentz force is considered. The 
3-acceleration in special relativity is given by [5]:
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→
F = q

→
E + q→ν × 

→
B

 1  (
→
F × →ν )→ν	 →a = ―  

→
F	-	――――		

 mγ  c2 

 m	 ― s

 1γ = ――――
 

 νln = 
 2f

 z - z0 - 
V(z,t) = 2 ―――――― Vmax cos(ω(t - t0)) d

 2E (t) = ― Vmax sin(ω(t - t0)) d

 dν  q ― = ― E(t) γ (ν)-3

 dt  m

 ν2  2|q|1 - ―  dν = ――  Vmax sin(ω(t - t0)) dt
 c2  md

 4|q|Vmaxνi γ (νi) + ―――― 
	 ωmd―――――――――		≈	1
	 νf	γ	(νf)

 νb	≡ ―
 c

 |q|
 ―
 m

 ν2
1 -   c2

 d―
 2

 (2)

where m is the mass of the particle, c = 299 792 458 
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 is the Lorentz 
factor.

The kinetic energy in high-energy physics can be written as [6]:

 T = (γ - 1) mc2 (3)

Alvarez linac

The Alvarez linac was the first to make use of radiofrequency (RF) cavities as a voltage 
source [4], which were needed to achieve frequencies of a few hundred GHz [7]. These 
types of accelerators, where particles travel down a tube in which they are protected from 
external electric fields, are called Drift Tube Linac (DTL) [3].

In an Alvarez-type linac, the electric fields between all drift tubes are simultaneously iden-
tically directed. This means that, for particles to efficiently accelerate, they need to spend 
half the period of the voltage source inside the cavities where they are accelerated (which 
also corresponds to the time interval when the electric field does not change direction) 
and the other half inside drift tubes, where they are protected from external electric fields 
which would slow them down (because the electric field is in the opposite direction). Since 
the particle accelerates, the tubes need to become longer (as do the distances between 
them), and the length of the n-th tube ln can be written as:
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 (4)

where ν is the particle speed throughout the tube and f is the frequency of oscillation of 
the electric fields.

The distances between the tubes, where the particle speeds are not constant, are harder to 
find, which was the purpose of the algorithm described in this study.

Alvarez linac electric field approximation

It is necessary to find the magnitude and direction of the electric field at each point in 
space before the simulation can start. We used a linear approximation of the potential 
between drift tubes, which translates to a constant electric field. As for the direction, it is 
assumed that the electric fields are always parallel to the z-axis. If the potential is defined 
as 0 at the midpoint between subsequent drift tubes, the potential V can be written as:
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 2  (5)

where z - z0 is the distance from the end of the previous drift tube, and d is the distance 
between subsequent drift tubes. Vmax is the maximum magnitude of the potential at a given 
gap between drift tubes, and the cos(ω(t - t0)) term comes from the fact that an oscillatory RF 
cavity source is used, with an angular frequency ω = 2πf. The variable t describes the time 
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evolution of the potential V(z,t) and it is the time since the beginning of the simulation. t0 is 
determined by the algorithm in a way to successfully accelerate a large number of particles, 
its value is set up in a way such that the electric field changes sign when the beam of particles 
arrives so that the field can increase the speed of the particles instead of slowing them down.

The electric field in the gaps is taken as the negative gradient of the potential, which gives:
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 4|q|Vmaxνi γ (νi) + ―――― 
	 ωmd―――――――――		≈	1
	 νf	γ	(νf)
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 c

 |q|
 ―
 m

 ν2
1 -   c2

 d―
 2

 (6)

Algorithm – particle creation

The particles are created at the origin point of the coordinate system (0,0,0) at t = 0. The 
system is placed so that the particles accelerate in the positive z direction, which is also 
the symmetry axis of the accelerator. The created particles do not interact with each other, 
and they have a velocity distribution. Their speeds are generated as normally distributed 
random variables with a mean and standard deviation set by the person using the algo-
rithm. The velocity direction angles, the polar and azimuthal angles about the z-axis, are 
generated as evenly distributed random variables.

Algorithm – arbitrary accelerator construction

Before the motion of particles can start, an accelerator has to be constructed. Tubes of 
arbitrary, user-defined lengths and radii can be added as parts of the accelerator, and the 
distances between subsequent tubes can also be defined. The program uses these param-
eters to calculate the z-coordinates of the beginning and end of each accelerator segment 
and stores them in two separate lists, which are later used to determine whether the parti-
cles are inside an electric field. An arbitrarily constructed accelerator is shown in Figure 1.

Figure 1. An example of an arbitrarily constructed accelerator with 2 collimators at the ends, and 3 drift tubes in be-
tween.

http://st-open.unist.hr


RE
SE

AR
CH

 A
RT

IC
LE

2023 Vol. 4 • e2023.2211.11

st-open.unist.hr5

Algorithm – particle motion

The Runge-Kutta 4 (RK4) method [8] is used for numerically solving the equations of mo-
tion of the particles. Before moving the particle, it is necessary to check whether it is in-
side the region where the electric field is non-zero. For this purpose, we introduced two 
counters: one for counting the number of times a particle entered a new segment and 
another for counting the number of times the particle left the previous segment. This was 
done by using the z-coordinate of each particle in every step and checking if the particle 
crossed the z-coordinate of the start (end) of the next (current) segment. If the particle has 
entered more segments than it has left, that means that it is inside the drift tube, so the 
electric field is set to 0. In the other case (the particle has left every segment it has entered), 
the electric field is given by eq. 6. The times, positions and velocities of each particle in 
each step are saved for further use in the algorithm. The time step used in each step of 
moving the particles using the RK4 method was varied throughout the simulations. This is 
especially useful in cases where the particles start out at non-relativistic speeds and their 
speeds increase by orders of magnitude during the simulation. Using a constant timestep 
would either lead to an unnecessary amount of precision at the beginning of the simula-
tion or unreasonable run times. An example of particles going through a collimator, a de-
vice used to filter out particles and make the particle beam narrower, is shown in Figure 
2. The particles that hit the edge of a collimator (or any other drift tube) are removed from 
the beam array in the algorithm. The algorithm solves the equations of motion only for 
the particles which are in the beam array, so the particles in question are removed for the 
remainder of the simulation.

Figure 2. An example of particles with randomly generated velocities (both in magnitude and in direction) going 
through a collimator.
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Algorithm – finding the optimal accelerator

The first step in finding the optimal accelerator is searching for the particle that should 
be accelerated the most. It is not enough to take the mean speed of the generated parti-
cles, as there are velocity components in the x and y directions as well. We solved this by 
first allowing the particles to go through the initial collimator and then taking the median 
z-component of the velocity as the initial velocity of the particle that needs to be acceler-
ated the most.

After achieving the desired median velocity, all particles are removed, and a test particle 
with the median velocity as its initial velocity is created. The test particle first goes through 
the collimator, after which the electric field is set so that it starts accelerating the test parti-
cle when it exits the first collimator. We achieved this by setting t0 in eq. 6 as the time when 
the test particle exits the collimator. After this, another segment is added at a distance d 
from the collimator. The distance d is an informed estimate at first; the particle must stay 
in the gap between the first collimator and the subsequent drift tube for half of the RF 
source’s period, and the average speed of the particle is somewhere in between the initial 
speed at the beginning of the cavity and the speed of light. After making the first estimate 
(a weighted average of the test particle’s initial speed and the speed of light), the motion 
is continued, and the algorithm checks whether the initial guess was good or if it needs to 
be modified depending on whether the particle crossed the gap before or after the electric 
field direction change occurred. The condition that the cavity is too long is satisfied when 
the particle goes through the entire cavity and enters the next drift tube before the electric 
field changes its sign and starts accelerating the particle. The other case, when the cavity 
is too short, is satisfied when the electric field changes sign before the particle enters the 
next drift tube. These conditions are sensical, but would lead to infinite loops when run-
ning the program without additional modifications, as no numerical method is entirely 
accurate. It is thus necessary to define an acceptable distance to the next drift tube by mul-
tiplying the initial guess by a positive factor smaller than 1 if the cavity was too long, and 
in the case where the cavity was too short, its length is multiplied by a factor larger than 1. 
This kind of algorithm can be seen in the pseudocode below:

# d – gap length 
# Emax – maximum electric field magnitude 
# E – current electric field magnitude 
# Eprev – electric field magnitude in the previous step 
# q – particle charge 
# z – distance from the end of the previous drift tube 
if (|E/Emax| <0.01 and |z/d| <0 .01): 
{ 
print(“The gap is of appropriate length!”) 
} 
else if (E*q<0 and Eprev*q>O): 
{ 
print(“The gap is too short!”) 
d *=1.1 
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} 
else if z>d: 
{ 
print(“The gap is too long!”) 
d*=0.9 
}

After the gap length is modified, the particle is returned to the end of the previous segment 
and the checking process repeats. This is done after each drift tube. The length of the drift 
tube can be easily obtained from eq. 4, as the particle velocity remains constant inside the 
drift tube.

It is possible to analytically check whether the cavity length is accurate using equation 
2. In the cavity, the velocity and the force on the particle are both in the z-direction. By 
taking out the force from the parenthesis, the remaining terms inside it are equal to γ-2. If 
the acceleration is written as dν/dt and the force from eqs. 1 and 6 is used, the following 
differential equation is obtained:
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which can be solved by separation of variables. The equation is first turned into:
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where the analytic solution is obtained by integrating both sides of the equation. The lim-
its of the integral can be set as vi and vf for the left-hand side, and ti and tf for the right-hand 
side. The cosines which come from the integration are easy to discard, as the particle ar-
rives at the beginning of the first cavity at t = t0, and at the beginning of the n-th cavity after 
the first one at t = t0 + nT, so cos(ω(t - t0)) every time. The particle comes to the end of each 
cavity after half a period after it arrives at the beginning, meaning that cos(ω(t - t0)) = -1 in 
this case. Inserting this into the integral of eq. 8, the following result is obtained:
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The numerical result can now be checked with the analytic solution by checking whether 
the following is true:
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Results

Simulation with protons

We completed the first simulation with protons. The accelerator, which wer constructed 
with the algorithm, has two identical collimators at the beginning and the end of the accel-
erator with a length of 50 cm and radius of 1 cm, and further nine drift tubes in the middle. 
The electric fields oscillates with a frequency of 300 Mhz, and Vmax is 50 MV. The particles 
generated have a mean velocity of 0.08 c with a standard deviation 100 times smaller than 
the mean. The maximum polar angle of the initial velocity (angle to the z-axis) is 10°.

By allowing the test particle through, the change in its speed agrees with the analytic solu-
tion from eq. 10. The test particle accelerated from 0.0802 c to 0.801 c. The distance be-
tween the centers of the first two cavities is 206 cm, and the distance between the last two 
is 494 cm, which also intuitively logical, as the particle gets faster over time.

After successfully constructing the accelerator, a beam of 10,000 protons goes through the 
accelerator. Overall, 952 emerged from the first collimator with an (arithmetic) average 
speed of 0.0800 c and a standard deviation of 0.0008 c, which corresponds to an energy of 
(mean±standard deviation, 3.02±0.06) MeV. After going through the entire accelerator, only 
125 particles emerge with a speed of (0.801±0.001) c, which corresponds to the energy of 
(629±4) MeV. A snapshot of the simulation is shown in Figure 3, and the results are shown in 
Figure 4 and Figure 5, where
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. The distribution of speeds and energies after the first 
collimator is shaped as a normal distribution, which was expected, as the particles have 
only been filtered out by the direction of their velocities. The asymmetry in the speed and 
energy distributions after the second collimator also makes sense, and it can be attributed 
to the fact that only the particles close to the test particle speed were properly accelerated, 
while the rest start lagging behind, even if initially they were faster than the test particle.

Figure 3. 10,000 protons passing through the accelerator.
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The loss of most of the particles through the simulation is the result of using only collima-
tors as a means of focusing the beam, instead of using oscillating magnetic fields.

Figure 4. The distribution of particle speeds and energies after passing through the first collimator in the simulation 
with 10,000 protons. 952 protons passed through the first collimator.

Figure 5. The distribution of particle speeds and energies after passing through the second collimator in the simulation 
with 10,000 protons. 952 protons passed through the second collimator.
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Simulation with 208Pb53+ ions

The following simulation uses the same initial conditions as the last one, except 208Pb53+ ions 
are now accelerated instead of protons.

By letting the test particle through, the change in its speed agrees with the analytic solu-
tion from eq. 10. The test particle was accelerated from 0.07989 c to 0.523 c. The distance 
between the centers of the first two cavities is 119 cm, while the distance between the last 
two is 317 cm. Considering eq. 9, it can be seen that the final velocity at the end of each 

cavity depends on the ratio
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, which is four times smaller in this simulation than in the 
previous one, so it is expected that these lead ions are accelerated less than the protons, 
which consequentially makes the accelerator’s cavities longer.

After successfully constructing the accelerator, a particle beam of 10,000 208Pb53+ ions goes 
through the accelerator. Overall, 1011 particles emerged from the first collimator with an 
average speed of 0.0800c and a standard deviation of 0.0008 c, which is identical to the 
previous result, but in this case, it corresponds to the energy of 620±10 MeV due to the ions 
larger mass. After going through the entire accelerator, only 121 particles with a speed 
of 0.523±0.004 c emerge from the second collimator, which corresponds to 33.5±0.6 GeV 
(Figure 6 and Figure 7). The speed and energy distributions are again symmetrical after 
the first collimator and asymmetrical after the second one, just as in the previous case.

Figure 6. The distribution of particle speeds and energies after passing through the first collimator in the simulation 
with 10,000 208Pb53+ ions. 1011 ions passed through the first collimator.
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RE
SE

AR
CH

 A
RT

IC
LE

2023 Vol. 4 • e2023.2211.11

st-open.unist.hr11

Figure 7. The distribution of particle speeds and energies after passing through the second collimator in the simulation 
with 10,000 208Pb53+ ions. 121 ions passed through the second collimator.

Simulating the DTL part of CERN’s Linac4 accelerator with H- ions

CERN’s Linac4 accelerator uses an Alvarez-type DTL for part of its acceleration, with which 
it accelerates hydrogen ions from 0.08 c to 0.31 c (from 3 MeV to 50 MeV) through 120 drift 
tubes by using the source frequency of 352 MHz [3, 9]. The distances between the centers 
of neighboring cavities vary from 68 mm to 264 mm [3].

In this simulation, setting Vmax = 300kV gives results very similar to the real accelerator as 
it accelerates particles from ≈ 0.08 c to ≈ 0.31 c. The test particle and the accelerator con-
struction were successfully done. The change in the test particle’s speed coincides with eq. 
10, and it was accelerated from 0.07 c to 0.31 c with the distances between the centers of 
neighboring cavities varying from 76 mm to 264 mm which is very close to the real accel-
erator.

This example is more difficult to simulate with the algorithm used, as the accelerator is 
much longer, so many particles are lost, which means the initial conditions have to be 
readjusted so that the beam is more focused. In this simulation, the mean speed of the 
particles was set to 0.08 c with a standard deviation 1000 times less than the mean; the 
maximum polar angle was set to just 1°. The first and the final collimator are both 1m long, 
with a radius of just 1 mm.

After the construction of the Linac4 accelerator, the simulation starts with 10,000 hy-
drogen ions. Overall, 604 particles pass through the first collimator with a speed of 
(0.08000±0.00008) c, which corresponds to (2.995±0.006) MeV. At the end of the simulation, 
only 45 particles got through the second collimator with a speed of (0.26±0.07) c and an 
energy of (40±20) MeV. A snapshot from the simulation is shown in Figure 8, and the his-
tograms with the results are shown in Figure 9 and Figure 10.

http://st-open.unist.hr
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Figure 8. Snapshot from the simulation of the DTL part of CERN’s Linac4 accelerator with 10,000 H- ions.

Figure 9. The distribution of particle speeds and energies after passing through the first collimator in the simulation 
with 10,000 H- ions. 604 ions passed through the first collimator.

http://st-open.unist.hr
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Figure 10. The distribution of particle speeds and energies after passing through the second collimator in the simulation 
with 10,000 H- ions. 45 ions passed through the second collimator.

Analyzing the histograms (Figure 10), we can observe that the results are actually better 
than previously estimated, if looking at just the average values.

Most of the particles that went through the second collimator actually achieved speeds of 
around 0.31 c, as they should have. The remaining particles were suboptimally accelerat-
ed many times, so they significantly lowered the average value. This was to be expected, as 
this accelerator was much larger than the previous ones.

This example has shown how, with a relatively simple algorithm, it is still possible to get 
meaningful results when simulating a linac. The biggest problem here was that the par-
ticle beam was not focused, which led to the loss of most particles. In reality, the DTL 
part of CERN’s Linac4 accelerator already receives a focused beam of particles that were 
accelerated in the previous part of the accelerator, and the beam is held focused by using 
quadrupole magnets.

Discussion

We demonstrated how a linear particle accelerator can be simulated even with a simple 
algorithm. This is in line with the analytic predictions of eq. 10, and the algorithm itself 
is very flexible because it can be easily used on any charged particle. All simulations an-
alyzed here give the expected distributions of speeds and energies. By comparing the re-
sults from this algorithm to the actual CERN Linac4 accelerator [9], we showed that this 
algorithm can be used for simulating real accelerators with a certain degree of accuracy, 
rather than only simple accelerator models.

http://st-open.unist.hr
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With a few simple modifications, the algorithm could be further improved. Firstly, the 
shape of the electric field inside the cavities could be modified. Here we made the simplest 
assumption that the potential inside the cavities is linear and used it to compare the re-
sults with an analytic solution. In real-world applications, one would start from Maxwell’s 
equations and the boundary conditions inside the cavities, but a significant improvement 
could be achieved just by approximating the standing waves in the RF cavities by a sine 
function. Furthermore, quadrupole magnets could be introduced to focus the beam. The 
loss of a large portion of the initial particles is impractical and could damage the device 
if it were done in practice. In fact, the loss of particles in a real experimental setting is 
expected to be even larger without quadropole magnets than in this study, as we assumed 
that the particles inside the beam do not repel each other to make the algorithm simpler 
and faster to run. The entire code is available on GitHub (github.com/rbarac1/Bachelor-s-
Thesis), and the algorithm can be easily modified by changing the electric and magnetic 
fields into some arbitrary functions.
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